Assuming this coin is on earth and that it wasn’t dropped forcefully:
Use the formula d = 1/2at^2. Rewriting using a=g and solving for height h gets us h = 1/2(9.8)t^2.
In this case that would get that the change in height h is 0.5(9.8)(0.3^2) = 0.441 m.
Answer:
A real emf device has an internal resistance, but an ideal emf device does not.
<h2>
Answer: 7020.117 m/s</h2>
Explanation:
The velocity of a satellite describing a circular orbit is<u> constant</u> and defined by the following expression:
(1)
Where:
is the gravity constant
the mass of the massive body around which the satellite is orbiting, in this case, the Earth
.
the radius of the orbit (measured from the center of the planet to the satellite).
This means the radius of the orbit is equal to <u>the sum</u> of the average radius of the Earth
and the altitude of the satellite above the Earth's surface
.
Note this orbital speed, as well as orbital period, does not depend on the mass of the satellite. It depends on the mass of the massive body (the Earth).
Now, rewriting equation (1) with the known values:
K.E.= 1/2 x MV^2 = 1/2 x 40(kg) x (25x25) =12500J
Answer:
ans: 4.34 × 10^(-9) N
Explanation:
mass of Mya say (m) = 65 kg
mass of spaceship say (M) = 1600 kg
universal gravitational constant(G) =6.67 × 10^(-11) Nm²/kg²
separation distance (d) = 4m
so,
gravitational force (F)= GMm/d²
=( 6.67 × 65 × 1600) / ( 10¹¹ × 4²)
= 4.34 × 10⁴ / 10¹³
= 4.34 × 10^(-9) N