Yes, since it depends on the normal and resultant
Answer:
V = 44.4 units.
Explanation:
In order to solve this problem, we must use the Pythagorean theorem. Which is defined by the following expression.

where:
Vx = - 43 units
Vy = 11.1 units
Now replacing:

Answer:
Explanation:
The water particles just flow through each other. They cannot be destroyed nor created.
Answer:
Δ
= 84 Ω,
= (40 ± 8) 10¹ Ω
Explanation:
The formula for parallel equivalent resistance is
1 /
= ∑ 1 / Ri
In our case we use a resistance of each
R₁ = 500 ± 50 Ω
R₂ = 2000 ± 5%
This percentage equals
0.05 = ΔR₂ / R₂
ΔR₂ = 0.05 R₂
ΔR₂ = 0.05 2000 = 100 Ω
We write the resistance
R₂ = 2000 ± 100 Ω
We apply the initial formula
1 /
= 1 / R₁ + 1 / R₂
1 /
= 1/500 + 1/2000 = 0.0025
= 400 Ω
Let's look for the error (uncertainly) of Re
= R₁R₂ / (R₁ + R₂)
R’= R₁ + R₂
= R₁R₂ / R’
Let's look for the uncertainty of this equation
Δ
/
= ΔR₁ / R₁ + ΔR₂ / R₂ + ΔR’/ R’
The uncertainty of a sum is
ΔR’= ΔR₁ + ΔR₂
We substitute the values
Δ
/ 400 = 50/500 + 100/2000 + (50 +100) / (500 + 2000)
Δ
/ 400 = 0.1 + 0.05 + 0.06
Δ
= 0.21 400
Δ
= 84 Ω
Let's write the resistance value with the correct significant figures
= (40 ± 8) 10¹ Ω
Number of barrels are 3.0. Each barrel contains 42 gallons of oil. Thus, total volume of oil will be 42×3=126 gallons.
Converting gallons into m^{3}
1 gallon=0.00378 m^{3}
Thus, 126 gallons=0.4769 m^{3}
Thickness of oil film is 2.5\times 10^{2} nm, converting it into meters as follows:
1 nm=10^{-9} m
Thus,
2.5\times 10^{2} nm=1.5\times 10^{-7}m
Now, volume V of oil is related to area A and thickness T as follows:
V=A×T
rearranging,
A=\frac{V}{T}=\frac{0.4769 m^{3}}{2\times 10^{-7}m}=2.38\times 10^{6}m^{2}
Thus, square meters of oil will be 2.38\times 10^{6}m^{2}