Many ecosystems and plants are damaged or destroyed when a volcano erupts.
When the pendulum and roller coaster move to the top, its has more potential energy whereas when comes to the bottom has more kinetic energy.
<h3>Compare and contrast the energy transfer of a roller coaster to that of a pendulum:</h3><h3>What is the transfer of energy in a roller coaster?</h3>
The transfer of potential energy to kinetic energy occur when the roller coaster move along the track. As the motor pulls the cars to the top, the body has more potential energy whereas when the body comes to the bottom , it has kinetic energy in the object.
<h3>What is the energy transfer in a pendulum?</h3>
As a pendulum swings, its potential energy changes to kinetic energy and kinetic energy changes into potential energy. At the top more potential energy is present.
So we can conclude that When the pendulum and roller coaster move to the top, its has more potential energy whereas when comes to the bottom has more kinetic energy.
Learn more about energy here: brainly.com/question/13881533
#SPJ1
Answer:
If the canoe heads upstream the speed is zero. And directly across the river is 8.48 [km/h] towards southeast
Explanation:
When the canoe moves upstream, it is moving in the opposite direction of the normal river current. Since the velocities are vector (magnitude and direction) we can sum each vector:
Vr = velocity of the river = 6[km/h}
Vc = velocity of the canoe = -6 [km/h]
We take the direction of the river as positive, therefore other velocity in the opposite direction will be negative.
Vt = Vr + Vc = 6 - 6 = 0 [km/h]
For the second question, we need to make a sketch of the canoe and we are watching this movement at a high elevation. So let's say that the canoe is located in point 0 where it is located one of the river's borders.
So we are having one movement to the right (x-direction). And the movement of the river to the south ( - y-direction).
Since the velocities are vector we can sum each vector, so using the Pythagoras theorem we have:
![Vt = \sqrt{(6)^{2} +(-6)^{2} } \\Vt=8.48[km/h]](https://tex.z-dn.net/?f=Vt%20%3D%20%5Csqrt%7B%286%29%5E%7B2%7D%20%2B%28-6%29%5E%7B2%7D%20%7D%20%5C%5CVt%3D8.48%5Bkm%2Fh%5D)
Seriously... B the other options are rediculous