Answer:
Explanation:
Calculating the exit temperature for K = 1.4
The value of
is determined via the expression:

where ;
R = universal gas constant = 
k = constant = 1.4


The derived expression from mass and energy rate balances reduce for the isothermal process of ideal gas is :
------ equation(1)
we can rewrite the above equation as :


where:



Thus, the exit temperature = 402.36 K
The exit pressure is determined by using the relation:



Therefore, the exit pressure is 17.79 bar
Answer:
Instantaneous speed means speed at any instant
that means Speed is changing with time
You know speed is distance/time
So that means distance is also changing with time
So we take infinitesimal small distance per infinitesimal small time As we assume speed is constant in infinitesimal small time dt
So, we take speed = ds/dt
ds = infinitesimal small distance
dt = infinitesimal small time
As its ratio is equal to speed at any instant
Note : We are taking infinitesimal small distance
But :) we are taking infinitesimal small time also
As you know if denominator is small fraction is large So fraction always give large value
So it's not O ( this makes confuse to most of students)
So, thanks
Good question
Keep thinking like this :)
I think its a. i am not sure though.
Answer:
B
Explanation:
Newton’s Second Law of Motion
Newton’s Second Law of Motion states that ‘when an object is acted on by an outside force, the mass of the object equals the strength of the force times the resulting acceleration’.
This can be demonstrated dropping a rock or and tissue at the same time from a ladder. They fall at an equal rate—their acceleration is constant due to the force of gravity acting on them.
The rock's impact will be a much greater force when it hits the ground, because of its greater mass. If you drop the two objects into a dish of water, you can see how different the force of impact for each object was, based on the splash made in the water by each one.
<span>Freezing involves the decrease in value of latent heat by 80 Cal/gm and a change of state from the Liquid phase to the solid phase.
So, in short, Fill in the blank as follows:
1st blank = Release/decrease
2nd blank = Liquid
Hope this helps!
</span>