Answer: 3.48g
Explanation:
here, we will be using conservation of momentum to solve the problem. i.e the total momentum remains unchanged, unless an external force acts on the system. We'll in thus question, there is no external force acting in the system.
Remember, momentum = mass * velocity, then
mass of blood * velocity of blood = combined mass of subject and pallet * velocity of subject and pallet
Velocity of blood = 56.5cm = 0.565m
mass of blood * 0.565 = 54kg * (0.000063/0.160)
mass of blood * 0.565 = 54 * 0.00039375
mass of blood * 0.565 = 0.001969
mass of blood = 0.00348kg
Thus, the mass of blood that leaves the heart is 3.48g
Answer:The acceleration due to gravity g is inversely proportional to the square of the radius in the formula g = GM / R^2 where G is the gravitational constant = 6.67 x 10^-11 Nm^2/kg^2, M is the mass of the Earth and R is the radius of the Earth
Explanation:
The last one, handmade gifts require more of the givers time!