It is a solution, because it's the alloy of tin and copper
Answer:
2,3–dimethylpentane
Explanation:
To know which option is correct, we shall determine the name of the compound.
To obtain the name of the compound, do the following:
1. Determine the longest continuous carbon chain. This gives the parent name of the compound.
2. Identify the substituent group attached to the compound.
3. Locate the position of the substituent group by giving it the lowest possible count.
4. Combine the above to obtain the name of the compound.
Now, we shall determine the name of the compound as follow:
1. The longest continuous carbon chain is 5. Thus, the parent name of the compound is pentane.
2. The substituent group attached is methyl (–CH₃)
3. There are two methyl group attached to the compound. One is located at carbon 2 and the other at carbon 3.
4. Therefore, the name of the compound is:
2,3–dimethylpentane
None of the options are correct.
q = mCΔT
The correct specific heat capacity of water is <em>4.187 kJ/(kg.K)</em>.
ΔT = q/mC = 87 kJ/[648.00 kg x 4.187 kJ/(kg.K)] = 87 kJ/(2713 kJ/K) = 0.032 K
Tf = Ti + ΔT = 298 K + 0.032 K = 298.032 K
Mass, what its made out of, and atomic number
Answer:
C. 0.4.
Explanation:
<em>∵ mole fraction of acetic acid (X acetic acid) = (no. of moles acetic acid)/(total no. of moles) = (no. of moles acetic acid)/(no. of moles of acetic acid + no. of moles of water).</em>
<em></em>
- no. of moles of acetic acid = 2, no. of moles of water = 3.
- Total no. of moles = no. of moles of acetic acid + no. of moles of water = 2 + 3 = 5.
<em>∴ mole fraction of acetic acid (X acetic acid) = (no. of moles acetic acid)/(total no. of moles) =</em> (2)/(5)<em> = 0.4.</em>