Answer:
Carbon monoxide
Explanation:
Carbon dioxide and carbon monoxide have the same number of carbon atoms.
Mark Brainliest
Alloys are preferable at times because they offer interesting properties than pure metal. Alloys are made in order to modify or enhance properties, especially mechanical properties. Examples are stainless steel, brass and wrought iron.
Go get a science teacher but i think it is because ................
Answer:

Explanation:
Data:
I = 2.15 A
t = 8 min 24 s
T = 26.0 °C
V = 65.4 mL
p = 774.2 To
1. Write the equation for the half-reaction
2H₂O ⟶ O₂ + 4H⁺ + 4e⁻
2. Calculate the moles of oxygen
V = 0.0654 L
T = (26.0 + 273.15) K = 299.15 K

3. Calculate the moles of electrons

4. Calculate the number of coulombs
t = 8 min 24 s =504 s
Q = It = 504 s × 2.10 C·s⁻¹= 1058 C
5. Calculate the number of electrons

6. Calculate Avogadro's number

Answer:
Explanation:
a).
conc of Ca²⁺ =0.0025 M
pCa = -log(0.0025) = 2.6
logK,= 10.65 So lc = 4.47 x 10.
Formation constant of Ca(EDTA)]-z= 4.47 x 10¹⁰ At pH = 11, the fraction of EDTA that exists Y⁻⁴ is
=0.81
So the Conditional Formation constant=
=0.81x 4.47 x10¹⁰
=3.62x10¹⁰
b)
At Equivalence point:
Ca²⁺ forms 1:1 complex with EDTA At equivalence point,
Number of moles of Ca²⁺= Number of moles of EDTA Number of moles of Ca²⁺ = M×V = 0.00250 M × 50.00 mL = 0.125 mol
Number of moles of EDTA= 0.125 mol
Volume of EDTA required = moles/Molarity = 0.125 mol / 0.0050 M = 25.00 mL
V e= 25.00 mL
At equivalence point, all Ca²⁺ is converted to [CaY²⁻] complex. So the concentration of Ca²⁺ is determined by the dissociation of [CaY²⁻] complex.
![[CaY^{2-}] = \frac{Initial,moles,of, Ca^{2+}}{Total,Volume} = \frac{0.125mol}{(50.00+25.00)mL} = 0.001667M](https://tex.z-dn.net/?f=%5BCaY%5E%7B2-%7D%5D%20%3D%20%5Cfrac%7BInitial%2Cmoles%2Cof%2C%20Ca%5E%7B2%2B%7D%7D%7BTotal%2CVolume%7D%20%3D%20%5Cfrac%7B0.125mol%7D%7B%2850.00%2B25.00%29mL%7D%20%3D%200.001667M)

Ca²⁺ + Y⁴ ⇄ CaY²⁻
Initial 0 0 0.001667
change +x +x -x
equilibrium x x 0.001667 - x
![{K^'}_f = \frac{[CaY^{2-}]}{[Ca^{2+}][Y^4]}=\frac{0.001667-x}{x.x} =\frac{0.001667-x}{x^2}\\\\x^2 = \frac{0.001667-x}{{K^'}_f}\\ \\](https://tex.z-dn.net/?f=%7BK%5E%27%7D_f%20%3D%20%5Cfrac%7B%5BCaY%5E%7B2-%7D%5D%7D%7B%5BCa%5E%7B2%2B%7D%5D%5BY%5E4%5D%7D%3D%5Cfrac%7B0.001667-x%7D%7Bx.x%7D%20%3D%5Cfrac%7B0.001667-x%7D%7Bx%5E2%7D%5C%5C%5C%5Cx%5E2%20%3D%20%5Cfrac%7B0.001667-x%7D%7B%7BK%5E%27%7D_f%7D%5C%5C%20%5C%5C)

x = 2.15×10⁻⁷
[Ca+2] = 2.15x10⁻⁷ M
pca = —log(2 15x101= 6.7