your answer is the letter (b)
A parallel circuit is sometimes called a current divider because current splits up among all the resistors in the parallel circuit. In addition, the current through the branches is inversely proportional to the resistance of the branch. If the resistance in each branch is kept constant but the voltage is decreased, the current will decrease.
Answer:
A. 4148 J/K/Kg
B. 4148 J/K/L
Explanation:
A. Heat capacity per unit mass is known as the specific heat capacity, c.
C = Heat capacity/mass(kg)
C = (523 J/K) / 0.125 Kg = 4148 J/K/Kg
B. Volume of water = mass/density
Density of water = 1 Kg/L
Volume of water = 0.125 Kg/ 1Kg/L
Volume of water = 0.125 L
Heat capacity per unit volume = (523 J/K) / 0.125 L
Heat capacity per unit volume = 4148 J/K/L
Answer:
Thus, the time for the first lamp is 44 minutes.
Explanation:
Power of first lamp, P' = 1000 W
Power of second lamp, P'' = 4400 W
time for second lamp, t'' = 10 minutes
Let the time for first lamp is t'.
As the energy is same, so,
P' x t' = P'' x t''
1000 x t' = 4400 x 10
t' = 44 minutes
Answer:
a) 0 < r < R: E = 0, R < r < 2R: E = KQ/r^2, r > 2R: E = 2KQ/r^2
b) See the picture
Explanation:
We can use Gauss's law to find the electric field in all the regions:
EA = qen/e0 where qen is the enclosed charge
Remember that the electric field everywhere outside a sphere is:
E(r) = q/(4*pi*eo*r^2) = Kq/r^2
a)
- For 0 < r < R: There is not enclosed charge because all of it remains on the outer layer of the conducting sphere, therefore E = 0 EA = 0/e0 = 0 E = 0
- For R < r < 2R: Here the enclosed charge is equal Q E = Q/(4*pi*eo*r^2) = KQ/r^2
- For r > 2R: Here the enclosed charge is equal 2Q E = Q/(4*pi*eo*r^2) + Q/(4*pi*eo*r^2) = 2Q/(4*pi*eo*r^2) = 2KQ/r^2
b) At the beginning there is no electric field this is why you see a line in zero, In R the electric field is maximum and then it starts to decrease exponentially with the distance and finally in 2R the field increase a little due to the second sphere to then continue decreasing exponentially with the distance