Im pretty sure it would be a primary consumer because Primary consumers are animals that eat primary producers aka herbivores (plant-eaters). Secondary consumers eat primary consumers aka carnivores (meat-eaters) and omnivores (animals that eat both animals and plants). Tertiary consumers eat secondary consumers.
Answer:
7.208 g
Explanation:
0.4mol x 
= 7.208 g
You are using molar mass of H20 to find the mass. Moles of 0.4 and 1 mol cancel out leaving you with just grams. You get the values in the numerator from the periodic table and the 2(1.01) is because you have 2 of the H in H20
a) 1 mole of Ne
b) i/2 mole of Mg
c) 1570 moles of Pb.
d) 2.18125*10^-13 moles of oxygen.
Explanation:
The number of moles calculated by Avogadro's number in 6.23*10^23 of Neon.
6.23*10^23= 1/ 6.23*10^23
= 1 mole
The number of moles calculated by Avogadro's number in 3.01*10^23 of Mg
3.2*10^23=1/6.23*10^23
= 1/2 moles of Pb.
Number of moles in 3.25*10^5 gm of lead.
atomic weight of Pb=
n=weight/atomic weight
= 3.25*10^5/ 207
= 1570 moles of Pb.
Number of moles 4.50 x 10-12 g O
number of moles= 4.50*10^-12/16
= 2.18125*10^-13 moles of oxygen.
Answer:
-3.617 °C
Explanation:
Step 1: Given data
Mass of water (m): 210.0 g
Energy released in the form of heat (Q): -3178 J (the minus sign corresponds to energy being released)
Specific heat of water (c): 4.184 J/g.°C
Temperature change (ΔT): ?
Step 2: Calculate the temperature change
We will use the following expression.
Q = c × m × ΔT
-3178 J = 4.184 J/g.°C × 210.0 g × ΔT
ΔT = -3.617 °C