Answer:-
2328.454 grams
Explanation:-
Volume V = 18.4 litres
Temperature T = 15 C + 273 = 288 K
Pressure P = 1.5 x 10^ 3 KPa
We know universal Gas constant R = 8.314 L KPa K-1 mol-1
Using the relation PV = nRT
Number of moles of oxygen gas n = PV / RT
Plugging in the values
n = (1.5 x 10^3 KPa ) x ( 18.4 litres ) / ( 8.314 L KPa K-1 mol-1 x 288 K)
n = 11.527 mol
Now the balanced chemical equation for this reaction is
2KNO3 --> 2KNO2 + O2
From the equation we can see that
1 mol of O2 is produced from 2 mol of KNO3.
∴ 11.527 mol of O2 is produced from 2 x 11.527 mol of KNO3.
= 23.054 mol of KNO3
Molar mass of KNO3 = 39 x 1 + 14 x 1 + 16 x 3 = 101 grams / mol
Mass of KNO3 = 23.054 mol x 101 gram / mol
= 2328.454 grams
Answer: 10.9 mol.
Explanation:
- To understand how to solve this problem, we must mention the reaction equation where water produced from PbO₂.
Pb + PbO₂ + 2H₂SO₄ → 2PbSO₄ + 2H₂O
- Now, it is a stichiometric oriented problem, that 1 mole of PbO₂ produces 2 moles of H₂O.
Using cross multiplication:
1.0 mole of PbO₂ → 2.0 moles of H₂O
5.43 moles of PbO₂ → ??? moles of water
The moles of water produced = (5.43 x 2.0) = 10.86 moles ≅ 10.9 moles.
Answer: b} The exact time when an individual atom will decay can be accurately predicted.
c} After each half-life, the amount of radioactive material is reduced by half.
Explanation:
All radioactive decay follows first order kinetics.
Rate law expression for first order kinetics is given by:
where,
k = rate constant
t = time taken for decay process
a = initial amount of the reactant
a - x = amount left after decay process
Expression for calculating half life, which is the time taken by the half of the reactants to decompose is:

<u>Answer:</u>
<em>Chemistry is the reaction between certain elements to </em><em>create a new compound</em><em> which may happen naturally but is mostly man made and hence has lot of good as well as </em><em>adverse effects.</em>
<u>Explanation:</u>
The <em>product or compound</em> that we get and the energy or outcome we receive is the ultimate result that decides whether chemical reaction that has happened is good or bad.
There are reactions that may cause pain and suffering to living beings and are also able to<em> Infuse damage and destruction</em> are are adverse nature. they can also change the course of nature hence are are <em>dangerous.
</em>