Answer:
14 m/s
Explanation:
Using the principle of conservation of energy, the potential energy is converted to kinetic energy, assuming any losses.
Kinetic energy is given by ½mv²
Potential energy is given by mgh
Where m is the mass, v is the velocity, g is acceleration due to gravity and h is the height.
Equating kinetic energy to be equal to potential energy then
½mv²=mgh
V
Making v the subject of the formula
v=√(2gh)
Substituting 9.81 m/s² for g and 10 m for h then
v=√(2*9.81*10)=14.0071410359145 m/s
Rounding off, v is approximately 14 m/s
Given the final velocity (Vf) and the acceleration (a), the distance that should be traveled by the plane is calculated through the equation,
d = (Vf² - Vi²) / 2a
V1 should be zero because the light plane started the motion from rest. Substituting the given values,
d = ((33 m/s)² - 0)) / 2(3 m/s²)
The distance is therefore equal to 181.5 meters.
Answer:
t = 5.59x10⁴ y
Explanation:
To calculate the time for the ¹⁴C drops to 1.02 decays/h, we need to use the next equation:
(1)
<em>where
: is the number of decays with time, A₀: is the initial activity, λ: is the decay constant and t: is the time.</em>
To find A₀ we can use the following equation:
(2)
<em>where N₀: is the initial number of particles of ¹⁴C in the 1.03g of the trees carbon </em>
From equation (2), the N₀ of the ¹⁴C in the trees carbon can be calculated as follows:
<em>where
: is the tree's carbon mass,
: is the Avogadro's number and
: is the ¹²C mass. </em>
Similarly, from equation (2) λ is:
<em>where t 1/2: is the half-life of ¹⁴C= 5700 years </em>

So, the initial activity A₀ is:
Finally, we can calculate the time from equation (1):
I hope it helps you!
Answer: A if thats not right its C
Explanation:
Answer: a) 19.21m b) 3.92secs
Explanation:
a) Maximum height reached by the object is the height reached by an object before falling freely under gravity.
Maximum height = U²/2g
U is the initial velocity = 19.6m/s
g is acceleration due to gravity = 10m/s²
Maximum Height = 19.6²/2(10)
H = 19.21m
b) The time elapsed before the stone hits the ground is the time of flight T= 2U/g
T= 2(19.6)/10
T = 39.2/10
Time elapsed is 3.92secs