Answer:
26 grams of D will be produced.
Explanation:
The reaction is given by:
A + B -----> C + D
Mass of A reacted = 21 g
Mass of B reacted = 22 g
Mass of C formed = 17 g
Mass of D formed = m =?
According to law of conservation of mass, the total mass of the reactants used is equal to the total mass of the product formed.
Then:
mass of A reacted + mass of B reacted = mass of C formed + mass of D formed
21 + 22 = 17 + m
m = 26 g
Ok so the gravitational force the moon exerts on earth is very small. The ocean, however, is affected by it. How gravity works (in a simplistic sense) is that, when you are closer to something, the force is stronger. So, when the moon is close to Earth (at Perigee) the force of gravity is stronger. So the moon pulls the water more towards itself. This results in higher waves occurring when the moon is closer (at perigee) than at apogee.
Answer:
∆H° rxn = - 93 kJ
Explanation:
Recall that a change in standard in enthalpy, ∆H°, can be calculated from the inventory of the energies, H, of the bonds broken minus bonds formed (H according to Hess Law.
We need to find in an appropiate reference table the bond energies for all the species in the reactions and then compute the result.
N₂ (g) + 3H₂ (g) ⇒ 2NH₃ (g)
1 N≡N = 1(945 kJ/mol) 3 H-H = 3 (432 kJ/mol) 6 N-H = 6 ( 389 kJ/mol)
∆H° rxn = ∑ H bonds broken - ∑ H bonds formed
∆H° rxn = [ 1(945 kJ) + 3 (432 kJ) ] - [ 6 (389 k J]
∆H° rxn = 2,241 kJ -2334 kJ = -93 kJ
be careful when reading values from the reference table since you will find listed N-N bond energy (single bond), but we have instead a triple bond, N≡N, we have to use this one .
Troposphere has most of our clouds temperature etc