Empirical formula is the simplest ratio of whole numbers of components in a compound
molecular formula is the actual ratio of components in a compound .
the molecular formula for the compounds given are as follows
ethyne - C₂H₂
ethene - C₂H₄
ethane - C₂H₆
methane - CH₄
the actual ratios of the elements simplified ratio
C : H C : H
ethyne 2:2 1:1
ethene 2:4 1:2
ethane 2:6 1:3
methane 1:4 1:4
the only compound where the actual ratio is equal to the simplified ratio is methane
therefore in methane molecular formula CH₄ is the same as empirical formula CH₄
Electronic Configuration of elements in a period is same because If you see the electronic Configuration of elements in a period you will notice that the valence shell electrons for all elements are present in the same Shell. For example, in first period consisting of Hydrogen and Helium, both the elements' valence electrons are present in the same Shell.
Electronic Configuration of Hydrogen,
1s^1
Electronic Configuration of Helium,
1s^2
Both elements' valance electrons are present in the 1st shell
(This is just a small example to understand the concept because other periods are long but the first period is short that's why I gave the example of the first period)
Answer:
Yes
Explanation:
Masses for the three subatomic particles can be expressed in amu (atomic mass units) or grams. For simplicity, we will use the amu unit for the three subatomics. Both neutrons and protons are assigned as having masses of 1 amu each.
Pressure can affect the boiling pressure of a substance
as when pressure increases the particles are closer together and so require more energy to boil therefore increasing the substances boiling point
hope that helps
Oil, we are using it too fast for it to regenerate.