1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kupik [55]
2 years ago
15

4. Locate the data and observations collected in your lab guide. What are the key results? How would you best summarize the data

to relate your findings? for thermal energy transfer between different materials
Physics
1 answer:
melisa1 [442]2 years ago
5 0

Answer:

heat is the transfer of thermal energy from a system to its surroundings or from ... It is very important to know that, in science, heat and temperature are not the same thing. ... Have you noticed that when you put a cold, metal teaspoon into your hot cup of ... AIM: To investigate which materials are the best conductors of heat.

Explanation:

You might be interested in
Which is a characteristic that makes electromagnetic waves and water waves different
Paraphin [41]
We know that a wave is a disturbance that transfers energy through matter or space There are two main types of waves: Mechanical and Electromagnetic. Water waves are mechanical. A mechanical wave is an oscillation of matter to transfers energy, but you always need a medium (substance such as: solid, liquid, gas, plasma) to transport it. The medium for water waves is, in fact, the water. For example, ripple in water is a surface wave. On the other hand, electromagnetic waves don't need a medium to transport, they can do it through the empty space. Then, this is the major characteristic that makes these two types of waves different.

4 0
3 years ago
"The International Space Station (ISS) orbits at a distance of 350 km above the surface of the Earth. (a) Determine the gravitat
vagabundo [1.1K]

Answer:

(a) g = 8.82158145m/s^2.

(b) 7699.990192m/s.

(c)5484.3301s = 1.5234 hours.(extremely fast).

Explanation:

(a) Strength of gravitational field 'g' by definition is

g = \frac{M_{(earth)} }{r^2} G , here G is Gravitational Constant, and r is distance from center of earth, all the values will remain same except r which will be radius of earth + altitude at which ISS is in orbit.

r = 6721,000 meters, putting this value in above equation gives g = 8.82158145m/s^2.

(b) We have to essentially calculate centripetal acceleration that equals new 'g'.

a_{centripetal}=\frac{V^2}{r} =g here g is known, r is known and v is unknown.

plugging in r and g in above and solving for unknown gives V = 7699.990192m/s.

(c)  S = vT,  here T is time period or time required to complete one full revolution.

S =  earth's circumfrence , V is calculated in (B) T is unknown.

solving for unknown gives T = 5484.3301s = 1.5234hours.

3 0
3 years ago
What is the formula for conservation of momentum
olga55 [171]

Answer:

The general equation for conservation of momentum during a collision between n number of objects is given as: [m i ×v i a ] = [m i ×v i b ] Where m i is the mass of object i , v i a is the velocity of object i before the collision, and v i b is the velocity of object i after the collision.

Explanation:

6 0
2 years ago
vA 61.2-kg circus performer is fired from a cannon that is elevated at an angle of 57.8 ° above the horizontal. The cannon uses
dsp73

Answer:

The effective spring constant of the firing mechanism is 1808N/m.

Explanation:

First, we can use kinematics to obtain the initial velocity of the performer. Since we know the angle at which he was launched, the horizontal distance and the time in which it's traveled, we can calculate the speed by:

v_0_x=\frac{x}{t}\\ \\v_0\cos\theta=\frac{x}{t}\\\\v_0=\frac{x}{t\cos\theta}

(This is correct because the horizontal motion has acceleration zero). Then:

v_0=\frac{20.8m}{(2.60s)\cos57.8\°}\\\\v_0=15.0m/s

Now, we can use energy to obtain the spring constant of the firing mechanism. By the conservation of mechanical energy, considering the instant in which the elastic band is at its maximum stretch as t=0, and the instant in which the performer flies free of the bands as final time, we have:

E_0=E_f\\\\U_e=K\\\\\frac{1}{2}kx^2=\frac{1}{2}mv^2\\\\\implies k=\frac{mv^2}{x^2}

Then, plugging in the given values, we obtain:

k=\frac{(61.2kg)(15.0m/s)^2}{(2.76m)^2}\\\\k=1808N/m

Finally, the effective spring constant of the firing mechanism is 1808N/m.

3 0
3 years ago
Nick is so excited to Trick-or-Treat, he RUNS down the street to the house that has the BIG candy bars! He ran 203 meters. It to
sergiy2304 [10]

Answer:

it would take him 1 minute to run 304.5 meters and 1 second to run 5.075 meters

Explanation:

8 0
2 years ago
Read 2 more answers
Other questions:
  • When the temperature of water increases from room temperature to 90C the process of heating the water is...
    9·2 answers
  • What is a Rift Valley ?
    9·2 answers
  • Based on Archimedes' principle, we know that if an object displaces a given weight of water, then the object is being buoyed up
    8·2 answers
  • Rashad is in the hospital and is about to undergo a brain-imaging process that involves placing him inside a magnetic field so t
    9·1 answer
  • A wall, acted upon by a force of 20 N, does not move. The work done on the wall in this process is
    11·1 answer
  • When a physical change occurs, the mass of the substance is conserved. This means that the total mass of the substance remains t
    5·1 answer
  • Which pair of labels is correct? A: Maximum kinetic energy C: Maximum gravitational potential energy B: Maximum kinetic energy D
    9·2 answers
  • Explain why people who use the drug in the following scenario might have potential health risks.
    5·2 answers
  • Read the article Watering Livestock with Renewable Energy.
    8·2 answers
  • When a pulse travels on a taut string, does it always invert upon reflection? Explain.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!