Answer:
Explanation:
T = 2π√(L/g)
If you increase L to 2L, the period is increased by a factor of √2
T = 3.5√2 ≈ 4.9 s
Answer:
(a) 8 V, (b) 144000 V, (c) 2 x 10^(-8) C
Explanation:
(a) charge, q = 5 μC , Work, W = 40 x 10-^(-6) J
The electric potential is given by
W = q V

(b)
charge, q = 8 x 10^(-6) C, distance, r = 50 cm = 0.5 m
Let the potential is V.

(c)
Work, W = 8 x 10^(-5) J, Potential difference, V = 4000 V
Let the charge is q.
W= q V

Consider a car<span> that travels between points A and B. The </span>car's<span> average </span>speed<span> can be ..... the </span>car<span> to </span>slow down<span> with a </span>constant acceleration<span> of </span>magnitude 3.50 m/s2<span>. </span>If<span> the </span>car comes<span> to a </span>stop<span> in a </span>distance<span> of</span>30.0 m<span>, what was the </span>car's original speed<span>? ... A </span>car<span> is </span>traveling<span> at 26.0 </span>m<span>/s when the </span>driver suddenly applies<span> the </span>brakes<span>, ...</span>
Answer:

Explanation:
M = Mass of Earth
G = Gravitational constant
R = Radius of Earth
The acceleration due to gravity on Earth is

On new planet

Dividing the two equations we get

The acceleration due to gravity on the other planet is 