Renewable energy or a energy that can be used again
Answer:
They gain kinetic energy
Explanation:
When the temperature of the particles in a substance rise, its internal energy increases. This internal energy is thus translated to kinetic energy of the particles in the substance. If the substance is a solid, as the kinetic energy increases, the vibrations of the particles of the substance increases causing it to undergo a change of state to liquid when the temperature reaches its melting point.
This change of state also occurs from the liquid state to the gaseous state as the internal energy of the substance, and thus the kinetic energy of the particles increase when the temperature reaches the substance's boiling point.
<u>So, as the temperature of a substance rises, the particles of the substance gain kinetic energy.</u>
Answer:
C. Count the atoms in each substance in the reactants and products.
Explanation:
A chemical reaction can be defined as a chemical process which typically involves the transformation or rearrangement of the atomic, ionic or molecular structure of an element through the breakdown and formation of chemical bonds to produce a new compound or substance.
In order for a chemical equation to be balanced, the condition which must be met is that the number of atoms in the reactants equals the number of atoms in the products.
This ultimately implies that, the mass and charge of the chemical equation are both balanced properly.
In Chemistry, all chemical equation must follow or be in accordance with the Law of Conservation of Mass, which states that mass can neither be created nor destroyed by either a physical transformation or a chemical reaction but transformed from one form to another in an isolated (closed) system.
One of the step used for balancing chemical equations is to count the atoms in each substance in the reactants and products.
For example;
NH3 + O2 -----> NO + H2O
The number of atoms in each chemical element are;
For the reactant side:
Nitrogen, N = 1
Hydrogen, H = 3
Oxygen, O = 2
For the product side;
Nitrogen, N = 1
Hydrogen, H = 2
Oxygen, O = 2
When we balance the chemical equation, we would have;
NH3 + 3O2 -----> 4NO + 2H2O
Answer:
h = 40.37 m
Explanation:
We will apply the law of conservation of energy to the skier in this case, as follows:

where,
m = mass of skier = 77 kg
g = acceleration due to gravity = 9.81 m/s²
vf = final speed = 30 m/s
vi = initial speed = 2 m/s
W_friction = Work done by friction and air resistance = 4000 J
Therefore,
![(77\ kg)(9.81\ m/s^2)h = \frac{1}{2}(77\ kg)[(30\ m/s)^2-(2\ m/s)^2] - 4000\ J\\\\h = \frac{34496\ J - 4000\ J}{755.37\ N}\\\\](https://tex.z-dn.net/?f=%2877%5C%20kg%29%289.81%5C%20m%2Fs%5E2%29h%20%3D%20%5Cfrac%7B1%7D%7B2%7D%2877%5C%20kg%29%5B%2830%5C%20m%2Fs%29%5E2-%282%5C%20m%2Fs%29%5E2%5D%20-%204000%5C%20J%5C%5C%5C%5Ch%20%3D%20%5Cfrac%7B34496%5C%20J%20-%204000%5C%20J%7D%7B755.37%5C%20N%7D%5C%5C%5C%5C)
<u>h = 40.37 m</u>