Answer: 321 J
Explanation:
Given
Mass of the box 
Force applied is 
Displacement of the box is 
Velocity acquired by the box is 
acceleration associated with it is 

Work done by force is 

change in kinetic energy is 

According to work-energy theorem, work done by all the forces is equal to the change in the kinetic energy
![\Rightarrow W+W_f=\Delta K\quad [W_f=\text{Work done by friction}]\\\\\Rightarrow 375+W_f=54\\\Rightarrow W_f=-321\ J](https://tex.z-dn.net/?f=%5CRightarrow%20W%2BW_f%3D%5CDelta%20K%5Cquad%20%5BW_f%3D%5Ctext%7BWork%20done%20by%20friction%7D%5D%5C%5C%5C%5C%5CRightarrow%20375%2BW_f%3D54%5C%5C%5CRightarrow%20W_f%3D-321%5C%20J)
Therefore, the magnitude of work done by friction is 
Hello,
The answer is option A "Venus".
Reason:
The planet Venus spins the wrong way many scientists are not sure why. Its not options B, C, or D because these planets spin the same way the as each other. (besides Venus) Therefore the answer is option A.
If you need anymore help feel free to ask me!
Hope this helps!
~Nonportrit
Answer: a) 12857.1 m/s/s b) 578.6 N
Explanation:
Impulse = change in momentum
Ft = mV2 - mV1
V = AT, 45 / .0035 = 12857.1 m/s/s
(b) .045 x 12857.1 = 578.6 N
Answer:
Longitudinal waves have the same direction of vibration as their direction of travel. This means that the movement of the medium is in the same direction as the motion of the wave.
To solve this problem we will apply the concepts related to the kinematic equations of linear motion. For this purpose we will define the speed as the distance traveled in a given period of time. Here the distance is equivalent to the orbit traveled around the earth, that is, a circle. Approaching the height of the aircraft with the radius of the earth, we will have the following data,



The circumference of the earth would be

Velocity is defined as,


Here
, then

Therefore will take
s or 506 hours, 19 minutes, 17 seconds