Answer:most of the positively charge particles should be bounce back at a range of angles as they collide with the atoms in the foil; only a few should pass straight through the foil
Explanation:
Answer:
1. 2.510kJ
2. Q = 1.5 kJ
Explanation:
Hello there!
In this case, according to the given information for this calorimetry problem, we can proceed as follows:
1. Here, we consider the following equivalence statement for converting from calories to joules and from joules to kilojoules:

Then, we perform the conversion as follows:

2. Here, we use the general heat equation:

And we plug in the given mass, specific heat and initial and final temperature to obtain:

Regards!
Sorry I don’t know the answer but sorry about this person
Tertiary consumers are the highest trophic levels.
The Boiling Point of 2-methylpropane is approximately -11.7 °C, while, Boiling Point of <span>2-iodo-2-methylpropane is approximately 100 </span>°C.
As both compounds are Non-polar in nature, So there will be no dipole-dipole interactions between the molecules of said compounds.
The Interactions found in these compounds are London Dispersion Forces.
And among several factors at which London Dispersion Forces depends, one is the size of molecule.
Size of Molecule:
There is direct relation between size of molecule and London Dispersion forces. So, 2-iodo-2-methylpropane containing large atom (i.e. Iodine) experience greater interactions. So, due to greater interactions 2-iodo-2-methylpropane need more energy to separate from its partner molecules, Hence, high temperature is required to boil them.