Half life is the time taken for a radioactive isotope to decay by half its original mass. In this case the half life of carbon-14 is 5.730 years.
Using the formula;
New mass = original mass × (1/2)^n; where n is the number of half lives (in this case n=1 )
New mass = 2 g × (1/2)^1
= 1 g
Therefore; the mass of carbon-14 that remains will be 1 g
Answer:

Explanation:
Hello,
In this case, for the given reaction, the equilibrium constant turns out:
![Keq=\frac{[B]}{[A]}=\frac{0.5M}{1.5M} =1/3](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D%3D%5Cfrac%7B0.5M%7D%7B1.5M%7D%20%3D1%2F3)
Nonetheless, we are asked for the reverse equilibrium constant that is:

Which is greater than one.
In such a way, the Gibbs free energy turns out:

Now, since the reverse equilibrium constant is greater than zero its natural logarithm is positive, therefore with the initial minus, the Gibbs free energy is less than zero, that is, negative.
Mass of Na2SO4= 514.18 grams
<h3>Further explanation</h3>
Given
423.67 g of NaCl
Required
mass of Na2SO4
Solution
Reaction
2NaCl + H2SO4 → Na2SO4 + 2HCl
mol NaCl :
= 423.67 g : 58.5 g/mol
= 7.24
From the equation, mol Na2SO4 :
= 1/2 x mol NaCl
= 1/2 x 7.24
= 3.62
Mass Na2SO4 :
= 3.62 mol x 142,04 g/mol
= 514.18 grams
To find food. echolocation is when a sound bounces off of something and they can tell what direction it came from.
Answer:
Because as we move down the group size/ radius of atom increases due to increase in shells and screening effect. The hold of nucleus on valence electrons decreases and effective nuclear charge decreases so it is easy to remove electron from greater sized atoms as compared to smaller sized aroms.
Energy required to remove electron is ionization energy so greater sized atoms have low ionization energy.
Explanation: