Oooooo there's a spongy bone? that's cool! Lol okay okay, I will research it and help you out.
Here's what I found:
Cancellous bone<span>, also known as </span>spongy<span> or </span>trabecular bone<span>, is one of the </span>two<span> types of </span>bone<span> tissue found in the human body. ... It is very porous and contains red </span>bone<span>marrow, where blood cells are made.</span>
Answer:
A. increasing the positive charge of the positively charged object and increasing the negative charge of the negatively charged object
Explanation:
The answer is A. Polarized in a vertical plane
If positioned correctly, a polarized lenses can block all reflected light from horizontal surface such as road
Answer:
(a) t = 1.14 s
(b) h = 0.82 m
(c) vf = 7.17 m/s
Explanation:
(b)
Considering the upward motion, we apply the third equation of motion:

where,
g = - 9.8 m/s² (-ve sign for upward motion)
h = max height reached = ?
vf = final speed = 0 m/s
vi = initial speed = 4 m/s
Therefore,

<u>h = 0.82 m</u>
Now, for the time in air during upward motion we use first equation of motion:

(c)
Now we will consider the downward motion and use the third equation of motion:

where,
h = total height = 0.82 m + 1.8 m = 2.62 m
vi = initial speed = 0 m/s
g = 9.8 m/s²
vf = final speed = ?
Therefore,

<u>vf = 7.17 m/s</u>
Now, for the time in air during downward motion we use the first equation of motion:

(a)
Total Time of Flight = t = t₁ + t₂
t = 0.41 s + 0.73 s
<u>t = 1.14 s</u>
Answer:
Explanation:
The work done is defined as the product of force applied in the direction of displacement and the displacement.
W = F x d x Cosθ
where, F is the force applied, d be the displacement and θ be the angle between the displacement and force.
For the normal forces, the angle between the displacement and the force applied is 90 degree, and the value of Cos 90 is zero, so the work done is zero.