Answer:
If the person is to remain the floor the reaction force will be equal to the normal force exerted by the floor.
F(normal) - F(reaction) = 0
That means the person is not moving with respect to the elevator.
Expanding the applied forces we have:
Fw - Fn = 720 - 710 = 10 N where the positive direction is chosen as down
Fw is the weight of the person and Fn the force exerted on the person by the elevator,
The acceleration of the person the becomes F = m a = m * 10 N and will be downward agreeing with our choice of coordinate axes.
Answer:
E₁ = 1.042 eV
E₄₋₃= 7.29 eV
E₄₋₂= 12.50 eV
E₄₋₁= 15.63 eV
E₃₋₂= 5.21eV
E₃₋₁= 8.34eV
E₂₋₁= 3.13eV
Explanation:
The energy in an infinite square-well potential is giving by:
<em>where, h: Planck constant = 6.62x10⁻³⁴J.s, n: is the energy state, m: mass of the electron and L: widht of the square-well potential </em>
<u>The energy of the electron in the ground state, </u><u>n = 1</u><u>, is: </u>
The photon energies that are emitted as the electron jumps to the ground state is the difference between the states:





Have a nice day!
Answer is C is the correct answer