1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valkas [14]
3 years ago
15

Whos still awake???​

Physics
2 answers:
Vinvika [58]3 years ago
6 0

Meeeeeeeeeeeeeeeeeeeeeeeere
lilavasa [31]3 years ago
3 0

Answer:

definitely not me

Explanation:

why would I?

You might be interested in
Skater begins to spend with arms held out at shoulder height. The skater wants to match the speed of the spin to the beat of the
Aleksandr [31]

Answer:

the moment of inertia with the arms extended is Io and when the arms are lowered the moment

I₀/I > 1    ⇒   w > w₀

Explanation:

The angular momentum is conserved if the external torques in the system are zero, this is achieved because the friction with the ice is very small,

           L₀ = L_f

           I₀ w₀ = I w

          w =\frac{I_o}{I} w₀

where we see that the angular velocity changes according to the relation of the angular moments, if we approximate the body as a cylinder with two point charges, weight of the arms

          I₀ = I_cylinder + 2 m r²

where r is the distance from the center of mass of the arms to the axis of rotation, the moment of inertia of the cylinder does not change, therefore changing the distance of the arms changes the moment of inertia.

If we say that the moment of inertia with the arms extended is Io and when the arms are lowered the moment will be

        I <I₀

        I₀/I > 1    ⇒   w > w₀

therefore the angular velocity (rotations) must increase

in this way the skater can adjust his spin speed to the musician.

7 0
3 years ago
An aircraft is at a standstill. It accelerates to 140kts in 28 seconds. The aircraft weighs 28,000 lbs. How many feet of runway
stiv31 [10]

Answer:

runway use is 3307.8 feet

Explanation:

given data

velocity = 140 kts = 140 × 0.5144 m/s = 72.016 m/s

time = 28 seconds

weight = 28000 lbs

to find out

How many feet of runway was used

solution

we will use here first equation of motion for find acceleration

v = u + at     ..............1

here v is velocity given and u is initial velocity that is 0 and a is acceleration and t is time

put here value in equation 1

72.016 = 0 + a(28)

a = 2.572 m/s²

and

now apply third equation of motion

s = ut + 0.5×a×t²    .......................2

here s is distance and u is initial speed and t is time and a is acceleration

put here all value in equation 2

s = 0 + 0.5×2.572×28²  

s = 1008.24 m = 3307.8 ft

so  runway use is 3307.8 feet

5 0
4 years ago
Very far from earth (at R- oo), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force
Margaret [11]

Answer:

Speed of the spacecraft right before the collision: \displaystyle \sqrt{\frac{2\, G\cdot M_\text{e}}{R\text{e}}}.

Assumption: the earth is exactly spherical with a uniform density.

Explanation:

This question could be solved using the conservation of energy.

The mechanical energy of this spacecraft is the sum of:

  • the kinetic energy of this spacecraft, and
  • the (gravitational) potential energy of this spacecraft.

Let m denote the mass of this spacecraft. At a distance of R from the center of the earth (with mass M_\text{e}), the gravitational potential energy (\mathrm{GPE}) of this spacecraft would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R}.

Initially, R (the denominator of this fraction) is infinitely large. Therefore, the initial value of \mathrm{GPE} will be infinitely close to zero.

On the other hand, the question states that the initial kinetic energy (\rm KE) of this spacecraft is also zero. Therefore, the initial mechanical energy of this spacecraft would be zero.

Right before the collision, the spacecraft would be very close to the surface of the earth. The distance R between the spacecraft and the center of the earth would be approximately equal to R_\text{e}, the radius of the earth.

The \mathrm{GPE} of the spacecraft at that moment would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}.

Subtract this value from zero to find the loss in the \rm GPE of this spacecraft:

\begin{aligned}\text{GPE change} &= \text{Initial GPE} - \text{Final GPE} \\ &= 0 - \left(-\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\right) = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \end{aligned}

Assume that gravitational pull is the only force on the spacecraft. The size of the loss in the \rm GPE of this spacecraft would be equal to the size of the gain in its \rm KE.

Therefore, right before collision, the \rm KE of this spacecraft would be:

\begin{aligned}& \text{Initial KE} + \text{KE change} \\ &= \text{Initial KE} + (-\text{GPE change}) \\ &= 0 + \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \\ &= \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\end{aligned}.

On the other hand, let v denote the speed of this spacecraft. The following equation that relates v\! and m to \rm KE:

\displaystyle \text{KE} = \frac{1}{2}\, m \cdot v^2.

Rearrange this equation to find an equation for v:

\displaystyle v = \sqrt{\frac{2\, \text{KE}}{m}}.

It is already found that right before the collision, \displaystyle \text{KE} = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}. Make use of this equation to find v at that moment:

\begin{aligned}v &= \sqrt{\frac{2\, \text{KE}}{m}} \\ &= \sqrt{\frac{2\, G\cdot M_\text{e} \cdot m}{R_\text{e}\cdot m}} = \sqrt{\frac{2\, G\cdot M_\text{e}}{R_\text{e}}}\end{aligned}.

6 0
3 years ago
Which of the following must an engineer take into account when designing a roller coaster?
saveliy_v [14]

Answer:

The correct answer would be A

8 0
3 years ago
Physics question plz help
blagie [28]

Answer:

B. 30\,s\,< t \le 40\,s.

Explanation:

The vehicle is travelling eastwards when its velocity is positive and westwards when velocity is negative. According to the graph, v > 0 for 30\,s\,< t \le 40\,s. Hence, correct answer is B.

5 0
3 years ago
Other questions:
  • A car approaches you with its horn blowing. The observed frequency is 503.7 Hz. Assume the speed of sound is 1100 ft/s. The car'
    7·1 answer
  • A glass window is coated with a transparent film of refractive index n2 =1.25. This film will cause destructive interference in
    6·1 answer
  • Why is the majority of Earth's freshwater not readily available for our use?
    14·2 answers
  • Suppose that the Sun were to collapse from its current radius of about 700,000 km to a radius of only about 6000 km (about the r
    5·2 answers
  • A geosynchronous Earth satellite is one that has an orbital period of precisely 1 day. Such orbits are useful for communication
    7·1 answer
  • What does a spring balance measure​
    15·2 answers
  • A satellite orbiting Mars (6.39x1023kg) experiences a gravitational field of 2.40N/kg. How far from Mars is the satellite orbiti
    5·1 answer
  • Someone help meeeee! please
    5·1 answer
  • What is the change in air pressure over a given distance called?.
    11·1 answer
  • Throw two balls from the same height at the same time at an initial speed of 20 m/s. One is thrown vertically down, while the ot
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!