Answer:
Height.
Explanation:
Potential energy can be defined as an energy possessed by an object or body due to its position.
Mathematically, potential energy is given by the formula;

Where,
P.E represents potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.
Hence, the property of the object (having a mass of 5 kilograms) which must differ to have different gravitational potential energies is the height from which they are falling from.
The object having the higher height would have a greater gravitational potential energy than the lower object.
Answer:
Sound intensity levels are quoted in decibels (dB) much more often than sound intensities in watts per meter squared. Decibels are the unit of choice in the scientific literature as well as in the popular media. The reasons for this choice of units are related to how we perceive sounds. How our ears perceive sound can be more accurately described by the logarithm of the intensity rather than directly to the intensity. The sound intensity level β in decibels of a sound having an intensity I in watts per meter squared is defined to be β(dB)=10log10(II0)β(dB)=10log10(II0), where I0 = 10−12 W/m2 is a reference intensity. In particular, I0 is the lowest or threshold intensity of sound a person with normal hearing can perceive at a frequency of 1000 Hz. Sound intensity level is not the same as intensity. Because β is defined in terms of a ratio, it is a unitless quantity telling you the level of the sound relative to a fixed standard (10−12 W/m2, in this case). The units of decibels (dB) are used to indicate this ratio is multiplied by 10 in its definition. The bel, upon which the decibel is based, is named for Alexander Graham Bell, the inventor of the telephone.
Table 1. Sound Intensity Levels and IntensitiesSound intensity level β (dB)Intensity I(W/m2)Example/effect01 × 10–12Threshold of hearing at 1000 Hz101 × 10–11Rustle of leaves201 × 10–10Whisper at 1 m distance301 × 10–9Quiet home401 × 10–8Average home501 × 10–7Average office, soft music601 × 10–6Normal conversation701 × 10–5Noisy office, busy traffic801 × 10–4Loud radio, classroom lecture901 × 10–3Inside a heavy truck; damage from prolonged exposure[1]1001 × 10–2Noisy factory, siren at 30 m; damage from 8 h per day exposure1101 × 10–1Damage from 30 min per day exposure1201Loud rock concert, pneumatic chipper at 2 m; threshold of pain1401 × 102Jet airplane at 30 m; severe pain, damage in seconds1601 × 104Bursting of eardrums
<h2>
Answer:</h2>
In circuits, the average power is defined as the average of the instantaneous power over one period. The instantaneous power can be found as:

So the average power is:

But:

So:

![P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}(\frac{1+cos(2\omega t)}{2} )dt \\\\P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}[\frac{1}{2}+\frac{cos(2\omega t)}{2}]dt \\\\P=\frac{v_{m}i_{m}}{T}[\frac{1}{2}(t)\right|_0^T +\frac{sin(2\omega t)}{4\omega} \right|_0^T] \\ \\ P=\frac{v_{m}i_{m}}{2T}[(t)\right|_0^T +\frac{sin(2\omega t)}{2\omega} \right|_0^T] \\ \\ P=\frac{v_{m}i_{m}}{2}](https://tex.z-dn.net/?f=P%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7BT%7D%5Cintop_%7B0%7D%5E%7BT%7D%28%5Cfrac%7B1%2Bcos%282%5Comega%20t%29%7D%7B2%7D%20%29dt%20%5C%5C%5C%5CP%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7BT%7D%5Cintop_%7B0%7D%5E%7BT%7D%5B%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7Bcos%282%5Comega%20t%29%7D%7B2%7D%5Ddt%20%5C%5C%5C%5CP%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7BT%7D%5B%5Cfrac%7B1%7D%7B2%7D%28t%29%5Cright%7C_0%5ET%20%2B%5Cfrac%7Bsin%282%5Comega%20t%29%7D%7B4%5Comega%7D%20%5Cright%7C_0%5ET%5D%20%5C%5C%20%5C%5C%20P%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7B2T%7D%5B%28t%29%5Cright%7C_0%5ET%20%2B%5Cfrac%7Bsin%282%5Comega%20t%29%7D%7B2%5Comega%7D%20%5Cright%7C_0%5ET%5D%20%5C%5C%20%5C%5C%20P%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7B2%7D)
In terms of RMS values:

Answer:
The pieces will attract one another
Explanation:
From the law of conservation of energy, we know that energy can neither be created nor destroyed, but transformed. If one piece of the toy that was neutral ends up having an electric charge (positive or negative), from the conservation of energy, the other piece must have a charge opposite to that on the other charged piece but equal in magnitude. These two pieces which are oppositely charged attracts each other, this shows that electric charge is conserved.