Speed = frequency x wavelength
300,000,000 = 125000 x wavelength
wavelength = 125000/300,000,000 =4.16667x10^-4 meters
or 4.1667E-4 meters
Answer:
4.98 m
Explanation:
Given that
Width of the mirror, d = 0.6 m
Organist distance to the mirror, s = 0.78 m
Distance between the singer and the organist, S = 5.7 + 0.78 = 6.48 m
Width of north wall, D?
Using the simple relationship
D/S = d/s, on rearranging
D = dS /s
D = (0.6 * 6.48) / 0.78
D = 3.888 / 0.78
D = 4.98 m
Therefore, we can conclude that the Width of north wall is 4.98 m
Answer:
Explanation:
mass of refrigerator, m = 110 kg
coefficient of static friction, μs = 0.85
coefficient of kinetic friction, μk = 0.59
(a) the minimum force required to just start the motion in refrigerator
F = μs x mg
F = 0.85 x 110 x 9.8
F = 916.3 N
(b) The force required to move the refrigerator with constant speed
F' = μk x mg
F' = 0.59 x 110 x 9.8
F' = 636.02 N
(c) Let a be the acceleration.
Net force = Applied force - friction force
F net = 950 - 636.02
F net = 313.98 N
a = F net / mass
a = 313.98 / 110
a = 2.85 m/s²
Answer:
the shooting angle ia 18.4º
Explanation:
For resolution of this exercise we use projectile launch expressions, let's see the scope
R = Vo² sin (2θ) / g
sin 2θ = g R / Vo²
sin 2θ = 9.8 75/35²
2θ = sin⁻¹ (0.6)
θ = 18.4º
To know how for the arrow the tree branch we calculate the height of the arrow at this point
X2 = 75/2 = 37.5 m
We calculate the time to reach this point since the speed is constant on the X axis
X = Vox t
t2 = X2 / Vox = X2 / (Vo cosθ)
t2 = 37.5 / (35 cos 18.4)
t2 = 1.13 s
With this time we calculate the height at this point
Y = Voy t - ½ g t²
Y = 35 sin 18.4 1.13 - ½ 9.8 1,13²
Y = 6.23 m
With the height of the branch is 3.5 m and the arrow passes to 6.23, it passes over the branch