To solve this problem it is necessary to apply the concepts related to acceleration due to gravity, as well as Newton's second law that describes the weight based on its mass and the acceleration of the celestial body on which it depends.
In other words the acceleration can be described as

Where
G = Gravitational Universal Constant
M = Mass of Earth
r = Radius of Earth
This equation can be differentiated with respect to the radius of change, that is


At the same time since Newton's second law we know that:

Where,
m = mass
a =Acceleration
From the previous value given for acceleration we have to

Finally to find the change in weight it is necessary to differentiate the Force with respect to the acceleration, then:




But we know that the total weight (F_W) is equivalent to 600N, and that the change during each mile in kilometers is 1.6km or 1600m therefore:


Therefore there is a weight loss of 0.3N every kilometer.
Answer:
effeciency n = = 49%
Explanation:
given data:
mass of aircraft 3250 kg
power P = 1500 hp = 1118549.81 watt
time = 12.5 min
h = 10 km = 10,000 m
v =85 km/h = 236.11 m/s


kinetic energy
kinetic energy 
gravitational energy 
total energy 


effeciency n = = 49%
Answer:
19.95 J
Explanation:
The center of mass of the ladder is initially at a height of:

The center of mass of the ladder ends at a height of:
=L/2
So, the work done is equal to the change in potential energy which is:
W = PE = 
now 
therefore
W = [mgL/2]×[1 - sin(theta)]
W = [(7.30)(9.81)(2.50)/2]×[1-sin(51°)]
solving this we get
W = 19.95 J
An object in motion will stay in motion, therefore the person will still be going the same speed as the car was going before the collision
<em><u>2</u></em><em><u>0</u></em><em><u>.</u></em><em><u>0</u></em><em><u>M</u></em><em><u>/</u></em><em><u>S</u></em><em><u>. </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>IS</u></em><em><u> </u></em><em><u>THE</u></em><em><u> </u></em><em><u>HORIZONTAL</u></em><em><u> </u></em><em><u>VELOCITY</u></em><em><u> </u></em><em><u>OF</u></em><em><u> </u></em><em><u>THE</u></em><em><u> </u></em><em><u>BALL</u></em><em><u> </u></em><em><u>JUST</u></em><em><u> </u></em><em><u>BEFORE</u></em><em><u> </u></em><em><u>IT</u></em><em><u> </u></em><em><u>REA</u></em><em><u>CHES</u></em><em><u> </u></em><em><u>THE</u></em><em><u> </u></em><em><u>GROUND</u></em>
<em><u>1</u></em><em><u>2</u></em><em><u>.</u></em><em><u>2</u></em><em><u> </u></em><em><u>SECONDS</u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>IS</u></em><em><u> </u></em><em><u>THE</u></em><em><u> </u></em><em><u>APPROXIMATE</u></em><em><u> </u></em><em><u>TOTAL</u></em><em><u> </u></em><em><u>TIME</u></em><em><u> </u></em><em><u>REQUIRED</u></em><em><u> </u></em><em><u>FOR</u></em><em><u> </u></em><em><u>THE</u></em><em><u> </u></em><em><u>BALL</u></em>