1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NikAS [45]
3 years ago
8

What type of circuits have no electricity flowing through them? *

Physics
1 answer:
marishachu [46]3 years ago
4 0

Answer:

abcdefghijk

Explanation:

You might be interested in
What is the work required for a penguin to push a box 2 meters with a force of 8 newtons?
choli [55]

Work done is given by product of force and displacement due to that force

So here we will have

Work = Force \times displacement

here we know that

Force = 8 N

displacement = 2 m

Now work done is given as

W = 8\times 2

W = 16 J

so it will do 16 J work to move the box

3 0
3 years ago
A spring gun is made by compressing a spring in a tube and then latching the spring at the compressed position. A 4.97-g pellet
dimaraw [331]

Answer:

v  = 2.8898 \frac{m}{s}

Explanation:

This is a problem easily solve using energy conservation. As there are no non-conservative forces, we know that the energy is conserved.

When the spring is compressed downward, the spring has elastic potential energy. When the spring is relaxed, there is no elastic potential energy, but the pellet will have gained gravitational potential energy and kinetic energy. Lets see what are the terms for each of this.

<h3>Elastic potential energy</h3>

We know that a spring following Hooke's Law has a elastic potential energy:

E_{ep} = \frac{1}{2} k (\Delta x)^2

where \Delta x is the displacement from the relaxed length and k is the spring's constant.

To obtain the spring's constant, we know that Hooke's law states that the force made by the spring is :

\vec{F} = - k \Delta \vec{x}

as we need 9.12 N to compress 4.60 cm, this means:

k = \frac{9.12 \ N}{4.6 \ 10^{-2} \ m}

k = 198.26 \ \frac{ N}{m}

So, the elastic energy of the compressed spring is:

E_{ep} = \frac{1}{2} 198.26 \ \frac{ N}{m} (4.6 \ 10^{-2} \ m)^2

E_{ep} = 0.209759 \ Joules

And when the spring is relaxed, the elastic potential energy will be zero.

<h3>Gravitational potential energy</h3>

To see how much gravitational potential energy will the pellet win, we can use

\Delta E_{gp} = m g \Delta h

where m is the mass of the pellet, g is the acceleration due to gravity and \Delta h is the difference in height.

Taking all this together, the gravitational potential energy when the spring is relaxed will be:

\Delta E_{gp} = 4.97 \ 10^{-3} kg \ 9.8 \frac{m}{s^2} 4.6 \ 10^{-2} m

\Delta E_{gp} = 0.00224 \ Joules

<h3>Kinetic Energy</h3>

We know that the kinetic energy for a mass m moving at speed v is:

E_k = \frac{1}{2} m v^2

so, for the pellet will be

E_k = \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

<h3>All together</h3>

By conservation of energy, we know:

E_{ep} = \Delta E_{gp} + E_k

0.209759 \ Joules = 0.00224 \ Joules + \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

So

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.209759 \ Joules - 0.00224 \ Joules

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.207519 \ Joules

v  = \sqrt{ \frac{ 0.207519 \ Joules}{ \frac{1}{2} \ 4.97 \ 10^{-3} kg } }

v  = 2.8898 \frac{m}{s}

7 0
3 years ago
Each driver has mass 79.0 kg. Including the masses of the drivers, the total masses of the vehicles are 800 kg for the car and 4
Mademuasel [1]

Answer:

Force exerted on the car driver by the seatbelt = 8139.4 N = 8.14 kN

Force exerted on the truck driver by the seatbelt = 1628.2 N = 1.63 kN

It is evident that the driver of the smaller vehicle has it worse. The car driver is in way more danger in this perfectly inelastic head-on collision with a bigger vehicle (the truck).

Explanation:

First of, we calculate the velocity of the vehicles after collision using the law of conservation of Momentum

Momentum before collision = Momentum after collision

Since the collision of the two vehicles was described as a head-on collision, for the sake of consistent convention, we will take the direction of the velocity of the bigger vehicle (the truck) as the positive direction and the direction of the car's velocity automatically is the negative direction.

Velocity of the truck before collision = 6.80 m/s

Velocity of the car before collision = -6.80 m/s

Let the velocity of the inelastic unit of vehicles after collision be v

Momentum before collision = (4000)(6.80) + (800)(-6.80) = 27200 - 5440 = 21,760 kgm/s

Momentum after collision = (4000 + 800)(v) = (4800v) kgm/s

Momentum before collision = Momentum after collision

21760 = 4800v

v = (21760/4800)

v = 4.533 m/s (in the direction of the big vehicle (the truck)

So, we then apply Newton's second law of motion which explains that the magnitude change in momentum is equal to the magnitude of impulse.

|Impulse| = |Change in momentum|

But Impulse = (Force exerted on each driver by the seatbelt) × (collision time) = (F×t)

Change in momentum = (Momentum after collision) - (Momentum before collision)

So, for the driver of the truck

Initial velocity = 6.80 m/s (the driver moves with the velocity of the truck)

Final velocity = 4.533 m/s

Change in momentum of the truck driver = (79)(6.80) - (79)(4.533) = 179.1 kgm/s

(F×t) = 179.1

F × 0.110 = 179.1

F = (179.1/0.11)

F = 1628.2 N = 1.63 kN

So, for the driver of the car

Initial velocity = -6.80 m/s (the driver moves with the velocity of the car)

Final velocity = 4.533 m/s

Change in momentum of the car driver = (79)(-6.80) - (79)(4.533) = -895.3 kgm/s

(F×t) = |-895.3|

F × 0.110 = 895.3

F = (895.3/0.11)

F = 8139.4 N = 8.14 kN

Hope this Helps!!!

3 0
3 years ago
How do we determine the conditions that existed in the very early universe? A We can only guess at the conditions, since we have
lakkis [162]

Answer:

D By looking all the way to the cosmological horizon, we can see the actual conditions that prevailed all the way back to the first instant of the Big Bang.

Explanation:

Astrophysicists are able to determine the conditions that existed in the early universe, by using instruments such as telescopes to observe and study cosmic horizons. More ideas about the early universe can be found from the thermal light present in cosmic backgrounds.

Scientists study these details that provide an insight into the conditions that existed so many years ago. They have been able to determine that the Big Bang involved so many collisions from these observations.

5 0
3 years ago
400 N of load can be overcome by an effort of 50 N by using a lever. Calculate the mechanical advantage of the lever.
mars1129 [50]

Answer:

load (l)=400N

Effort(E)=50N

mechanical advantage (MA)= load ÷Effort

(ma)=400÷50

(ma)=8

Explanation:

I copy pasted from the answer from the same question. Remember to first check if ur question is there

4 0
3 years ago
Other questions:
  • Which is an advantage of AC over DC power?
    10·2 answers
  • Calculate the distance travelled by the van between 16.0s and 23.0s. Give your answer correct to 2 significant figures.
    12·1 answer
  • A car moves with an initial velocity of 19 m/s due north. (Part A) Find the velocity of the car after 5.6 s if its acceleration
    10·1 answer
  • In what atmospheric layer do we find the highest concentration of ozone? the highest average air temperature?
    15·1 answer
  • ou are to drive to an interview in another town, at a distance of 300 km on an expressway. The interview is at 11:15 a.m. You pl
    14·1 answer
  • What is the answer to 17 ‐ 12× ‐ 18 ‐ 5×
    15·1 answer
  • Why is magnetic force a non contact force?
    12·1 answer
  • How much work is done by a crane that lowers 1000N of material a distance of 150
    11·2 answers
  • An optical engineer wishes to specify the properties of a concave makeup mirror, which is supposed to provide an upright and enl
    12·1 answer
  • An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.300 rev/s . The magnitude
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!