Answer:
The magnitude of the electric field is 5.75 N/C towards positive x- axis.
Explanation:
Given that,
Point charge at origin = 2 nC
Second charge = 5 nC
Distance at x axis = 8 m
We need to calculate the electric field at the point x = 2 m
Using formula of electric field

Put the value into the formula


The direction is toward positive x- axis.
Hence, The magnitude of the electric field is 5.75 N/C towards positive x- axis.
Answer:
A. respiration.
Explanation:
Cellular respiration can be defined as a series of metabolic reactions that typically occur in cells so as to produce energy in the form of adenosine triphosphate (ATP). During cellular respiration, high energy intermediates are created that can then be oxidized to make adenosine triphosphate (ATP). Therefore, the intermediary products are produced at the glycolysis and citric acid cycle stage.
Additionally, mitochondria provides all the energy required in the cell by transforming energy forms through series of chemical reactions; breaking down of glucose into Adenosine Triphosphate (ATP) used for providing energy for cellular activities in the body of living organisms.
Basically, oxygen goes into the body of a living organism such as plants, humans and animals when they breathe while glucose is absorbed by the body when they eat.
Hence, the conversion of sugar to energy in the presence of oxygen is respiration.
For a standing wave on a string, the wavelength is equal to twice the length of the string:

In our problem, L=50.0 cm=0.50 m, therefore the wavelength of the wave is

And the speed of the wave is given by the product between the frequency and the wavelength of the wave:
Answer:
v = 29.4m/s
Explanation:
Since the ball is dropped at rest,
u = 0m/s
a = 9.81m/s²
Using
v = u + at
After 3 seconds,
v = 0 + (9.81)(3)
v = 29.4m/s
Like charges repel, unlike charges attract
Two protons will also tend to repel each other because they both have a positive charge. On the other hand, electrons and protons will be attracted to each other because of their unlike charges.
So I would say no, unless the two bodies are placed close to each other where one has much more charge than the other, then due to induction, force of attraction becomes more than the force of repulsion.