A pebbled, uneven road would be easier to see at night because it minimizes the reflection of light from car’s light coming in the opposite direction. It is difficult to see when driving on the rainy day because the roadway reflects light from cars coming in the opposite <span>directions.</span>
On driving your motorcycle in a circle of radius 75 m on wet pavement, the fastest you can go before you lose traction, assuming the coefficient of static friction is 0.20 is 147m/s
Friction helps to maintain the slipping of the vehicle on the road hence lays a very important role.
Maximum velocity of a road with friction is given by the formula,
v = μRg
where, v is the maximum velocity
μ is the coefficient of static friction
R is the radius of the circle road
g is the acceleration due to gravity
Given,
μ = 0.20
R = 75m
g = 9.8m/s²
On substituting the given values in the above formula,
v = 0.20× 75 ×9.8
v = 147m/s
So, the Maximum velocity of the wet road is 147m/s.
Learn more about Velocity here, brainly.com/question/18084516
#SPJ4
K=0.5 mu×u
K=2200J no matter the direction
Answer: 10.58 C has flowed during the lightning bolt
Explanation:
Given that;
Time of flow t = 1.2 × 10⁻³
perpendicular distance r = 21 m
Magnetic field B = 8.4 x 10⁻⁵ T
Now lets consider the expression for magnetic field;
B = u₀I / 2πr
the current flow is;
I = ( B × 2πr ) / u₀
so we substitute
I = ( (8.4 x 10⁻⁵) × 2 × 3.14 × 21 ) / 4π ×10⁻⁷
= 0.01107792 / 0.000001256
= 8820 A
Hence the charge flows during lightning bolt will be;
q = It
so we substitute
q = 8820 × 1.2 × 10⁻³
q = 10.58 C
therefore 10.58 C has flowed during the lightning bolt
Answer:
The speed of the 270g cart after the collision is 0.68m/s
Explanation:
Mass of air track cart (m1) = 320g
Initial velocity (u1) = 1.25m/s
Mass of stationary cart (m2) = 270g
Velocity after collision (V) = m1u1/(m1+m2) = 320×1.25/(320+270) = 400/590 = 0.68m/s