Answer:- Oxidation number of Cl does not change as it is -1 on both sides.
Explanations:- oxidation number of Mg on reactant side is 0 as it is in its elemental form(not combined with another element).
Oxidation number of hydrogen in its compounds is +1, so if H is +1 in HCl the oxidation number of Cl is -1 as the sum has to be zero.
On product side, Mg oxidation number is +2 as the oxidation number of alkaline earth metals in their compounds is +2.
Two Cl are present in magnesium chloride, so if Mg is +2 then Cl is -1.
Oxidation number of H on product side is 0 as it is present in its elemental for,
,
So, it is only chlorine(Cl) whose oxidation number does not change for the given equation.
Answer:
0.32M
Explanation:
Given parameters:
Number of moles of NaCl = 1.29moles
Volume of solution = 4liters = 4dm³
Unknown:
Molarity of solution = ?
Solution:
Molarity is one the ways of expressing the concentration of a solute in a solution. It is given as;
Molarity = 
The unit is given as M which is mol/dm³
Input the parameters and solve;
Molarity =
= 0.32mol/dm³ or 0.32M
Explanation:
#2.
A centigram is 1/100 of a gram, so that means a gram equals 100 centigrams.
Therefore you multiply 72.4 grams by 100/1 (or just 100), and get 7240 cg.
You did that one right but put the wrong unit in the answer. It is is cg ( centigrams).
#3.
1 liter is equal to 1000 milliliters, and I kiloliter is equal to 1000 liters. So one kiloliter is 1000*1000 milliliters or 1,000,000 milliliters.
The conversion factor would be
1/1000000
#4.
1 gigabyte is equal to 10^9 bytes.
I byte is equal to 10^9 bytes.
So 1 gigabyte is 10^9 * 10^9 nanobytes, or 10^18.
The conversion factor would be (1*10^18)/1.
Answer:
False
Explanation:
False. The molecules of liquid are hold in the liquid state due to intermolecular forces or Van de Waals forces , without affecting the molecule itself and its atomic bonds (covalent bonds). When the temperature increases the kinetic energy of the molecules is higher , therefore they have more possibilities to escape from the attractive intermolecular forces and go to the gas state.
Note however that this is caused because the intermolecular forces are really weak compared to covalent bonds, therefore is easier to break the first one first and go to the gas state before any covalent bond breaks ( if it happens).
A temperature increase can increase vaporisation rate if any reaction is triggered that decomposes the liquid into more volatile compounds , but nevertheless, this effect is generally insignificant compared with the effect that temperature has in vaporisation due to Van der Waals forces.
The purpose of the uninoculated control tubes used in this test is that two uninoculated control tubes are needed to show the results of the medium in both aerobic and anaerobic environments. It is used to show it is sterile and also as a color comparison, used also to show that the medium remains green under both conditions.