Answer:
number of moles of NaCl produce = 12 mol
Explanation:
Firstly, we need to write the chemical equation of the reaction and balance it .
Na(s) + Cl2(g) → NaCl(s)
The balanced equation is as follows:
2Na(s) + Cl2(g) → 2NaCl(s)
1 mole(71 g) of chlorine produces 2 moles(117 g) of sodium chloride
6 mole of chlorine gas will produce ? mole of sodium chloride
cross multiply
number of moles of NaCl produce = 6 × 2
number of moles of NaCl produce = 12 moles
number of moles of NaCl produce = 12 mol
Selenium (Se) the most common isotope of this element. The nucleus consists of 34 protons (red) and 46 neutrons (blue).
Answer:
92.65256 cm^3
Explanation:
To find this, we can simply multiply all three dimensions to get the answer in cubic centimeters, and we get the answer above. If you want to be more specific, we can go by the sigfig rule and the answer would be rounded to 93 cm^3.
Answer: Limiting reactant = 3
Theoretical Yield= 1
Excess reactant=2
Explanation: The theoretical yield is the maximum possible mass of a product that can be made in a chemical reaction. It can be calculated from: the balanced chemical equation. the mass and relative formula mass of the limiting reactant , and. the relative formula mass of the product.
An excess reactant is a reactant present in an amount in excess of that required to combine with all of the limiting reactant. It follows that an excess reactant is one remaining in the reaction mixture once all the limiting reactant is consumed.
The limiting reagent is the reactant that is completely used up in a reaction, and thus determines when the reaction stops. From the reaction stoichiometry, the exact amount of reactant needed to react with another element can be calculated
Answer:
1290 atm
Explanation:
P1V1=P2V2
P2= (P1V1)/V2
P2=(2.15 atm * 750 mL)/(1.25 mL)
P2=1290 atm