Answer: Metals bond with metals.
Explanation: A metallic bond is a sharing of electrons between many atoms of a metal element. Metallic bonding is when positive ions (metals) are in a 'sea of negative electrons'. The electrons are delocalised, which means they can move around easily and carry charge, and this enables it to conduct electricity, even in a solid state. The big pool of electrons is like a free-for-all in that any valence electron can move to any atom within the material.
Answer:
D. oxygen atoms have twice as many protons as chlorine atoms
Answer:
the value of equilibrium constant for the reaction is 8.5 * 10⁷
Explanation:
Ti(s) + 2 Cl₂(g) ⇄ TiCl₄(l)
equilibrium constant Kc = ![\frac{1}{[Cl_2]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BCl_2%5D%5E2%7D)
Given that,
We are given:
Equilibrium amount of titanium = 2.93 g
Equilibrium amount of titanium tetrachloride = 2.02 g
Equilibrium amount of chlorine gas = 1.67 g
We calculate the No of mole = mass / molar mass
mass of chlorine gas = 1.67 g
Molar mass of chlorine gas = 71 g/mol
mole of chlorine = 1.67 / 71
= 7.0L
Concentration of chlorine is = no of mole / volume
= 0.024 / 7
= 3.43 * 10⁻³M
equilibrium constant Kc = ![\frac{1}{[Cl_2]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BCl_2%5D%5E2%7D)
= ![\frac{1}{[3.43 * 10^-^3]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5B3.43%20%2A%2010%5E-%5E3%5D%5E2%7D)
= 8.5 * 10⁷
Boiling liquids that want to escape gas