Answer:
A) If the paintball stops completely the magnitude of the change in the paintball’s momentum is 
B) If the paintball bounces off its target and afterward moves in the opposite direction with the same speed, the change in the paintball’s momentum is 
C) A paintball bouncing off your skin in the opposite direction with the same speed hurts more than a paintball exploding upon your skin because of the strength exerted is twice than if it explodes.
Explanation:
Hi
A) We use the formula of momentum
, so we have 
B) We use the same formula above, then due we have a change of direction at the same speed, therefore the change in the momentum is the double so
.
C) The average strength of the force an object exerts during impact is determined by the amount the object’s momentum changes. therefore
, as we don't have any data about the impact time but we know momentum is twice, time does no matter and strength is twice too.
Answer:
160 kg
12 m/s
Explanation:
= Mass of first car = 120 kg
= Mass of second car
= Initial Velocity of first car = 14 m/s
= Initial Velocity of second car = 0 m/s
= Final Velocity of first car = -2 m/s
= Final Velocity of second car
For perfectly elastic collision

Applying in the next equation


Mass of second car = 160 kg
Velocity of second car = 12 m/s
Answer:
(a). Index of refraction are
= 1.344 &
= 1.406
(b). The velocity of red light in the glass
2.23 ×
The velocity of violet light in the glass
2.13 ×
Explanation:
We know that
Law of reflection is

Here
= angle of incidence
= angle of refraction
(a). For red light
1 ×
=
× 
= 1.344
For violet light
1 ×
=
× 
= 1.406
(b). Index of refraction is given by

= 1.344


2.23 ×
This is the velocity of red light in the glass.
The velocity of violet light in the glass is given by

2.13 ×
This is the velocity of violet light in the glass.
Answer:43.34 m
Explanation:
Given
acceleration(a)
Initial Velocity(u)=0 m/s
After 6 s fuel runs out
Velocity after 6 s
v=u+at

After this object will start moving under gravity
height reached in first 6 s


s=36 m
After fuel run out distance traveled in upward direction is

here v=0
u=12 m/s




Answer:
t = 5.56 ms
Explanation:
Given:-
- The current carried in, Iin = 1.000002 C
- The current carried out, Iout = 1.00000 C
- The radius of sphere, r = 10 cm
Find:-
How long would it take for the sphere to increase in potential by 1000 V?
Solution:-
- The net charge held by the isolated conducting sphere after (t) seconds would be:
qnet = (Iin - Iout)*t
qnet = t*(1.000002 - 1.00000) = 0.000002*t
- The Volt potential on the surface of the conducting sphere according to Coulomb's Law derived result is given by:
V = k*qnet / r
Where, k = 8.99*10^9 ..... Coulomb's constant
qnet = V*r / k
t = 1000*0.1 / (8.99*10^9 * 0.000002)
t = 5.56 ms