First convert 90km/hr to m/s.
Initiate velocity = 0m/s (car was at rest)
Final velocity is 25m/s (90km/hr converted)
25m/s - 0m/s / 8s = 3.125 m/s^s
Therefore the answer is option A (3.13m/s^2)
16. each side length will be 16
Answer:
The speed of the baseball is approximately 19.855 m/s
Explanation:
From the question, we have;
The frequency of the microwave beam emitted by the speed gun, f = 2.41 × 10¹⁰ Hz
The change in the frequency of the returning wave, Δf = +3190 Hz higher
The Doppler shift for the microwave frequency emitted by the speed gun which is then reflected back to the gun by the moving baseball is given by 2 shifts as follows;


Where;
Δf = The change in frequency observed, known as the beat frequency = 3190 Hz
= The speed of the baseball
c = The speed of light = 3.0 × 10⁸ m/s
f = The frequency of the microwave beam = 2.41 × 10¹⁰ Hz
By plugging in the values, we have;


The speed of the baseball,
≈ 19.855 m/s
Answer:
A
Explanation:
Aδ fibers carry cold, pressure, and acute pain signals, and because they are thin (2 to 5 μm in diameter) and myelinated, they send impulses faster than unmyelinated C fibers, but more slowly than other, more thickly myelinated group A nerve fibers. Their conduction velocities are moderate.