Answer:
2.1mol/L
Explanation:
Number of moles = 0.21 moles
Volume = 0.1L
Molarity of a substance is the number of moles of solute dissolved in a volume of solvent (L)
Molarity = number of moles / volume of solvent
Molarity = 0.21 / 0.1
Molarity = 2.1mol/L
Answer:
B and C
Explanation:
When we have to do a buffer solution we always have to choose the reaction that has the <u>pKa closer to the desired pH value</u>. When we find the pKa values we will obtain:
![pKa_1=-Log[6.9x10^-^3]=2.16](https://tex.z-dn.net/?f=pKa_1%3D-Log%5B6.9x10%5E-%5E3%5D%3D2.16)
![pKa_2=-Log[6.2x10^-^8]=7.20](https://tex.z-dn.net/?f=pKa_2%3D-Log%5B6.2x10%5E-%5E8%5D%3D7.20)
![pKa_3=-Log[4.8x10^-^13]=12.31](https://tex.z-dn.net/?f=pKa_3%3D-Log%5B4.8x10%5E-%5E13%5D%3D12.31)
The closer value is pKa2 with a value of 7.2. Therefore we have to use the second reaction. In which
is the <u>acid</u> and
is the <u>base</u>. Therefore the answer for the first question is B and the answer for the second question is C.
4, 2, 1, and 3 is the answer
Answer:
Double replacement reaction
Explanation:
Now, let us first write the reaction equation properly:
H₂SO₄ + 2KOH ⇒ K₂SO₄ + 2H₂O
The above reaction is a neutralization reaction between an acid and a base whose product gives salt and water only at most instances.
From here, we can observe that the species displaces on another in their ionic state. Hydrogen replaces potassium and water is produced. Potassium combines chemically with sulfate ions to give the salt of potassium.
Answer:
Five
Explanation:
All group 15 elements have five valence electrons, but they vary in their reactivity.