Answer:
3.01 × 10^24 particles
Explanation:
According to Avagadro, in one mole of a substance, there are 6.02 × 10^23 atoms or particles.
Using the formula: N = n × NA
Where;
N= number of particles or atoms
n = number of moles
NA = Avagadro's constant or number
This means that for 5 moles of a substance, there will be:
5 × 6.02 × 10^23
= 30.1 × 10^23
= 3.01 × 10^24 particles
Answer:
V₁ = 10 mL
Explanation:
Given data:
Initial volume of HCl = ?
Initial molarity = 3.0 M
Final molarity = 0.10 M
Final volume = 300.0 mL
Solution:
Formula:
M₁V₁ = M₂V₂
M₁ = Initial molarity
V₁ = Initial volume of HCl
M₂ =Final molarity
V₂ = Final volume
Now we will put the values.
3.0 M ×V₁ = 0.10 M×300.0 mL
3.0 M ×V₁ = 30 M.mL
V₁ = 30 M.mL /3.0 M
V₁ = 10 mL
The mass of water that contains 2.5×10²⁴ atoms of Hydrogen is 74.79 g
<h3>Avogadro's hypothesis </h3>
From Avogadro's hypothesis,
6.02×10²³ atoms = 2 g of H
Therefore,
2.5×10²⁴ atoms = (2.5×10²⁴ × 2) / 6.02×10²³
2.5×10²⁴ atoms = 8.31 g of H
<h3>How to determine the mass of water </h3>
- 1 mole of water H₂O = (2×1) + 16 = 18 g
- Mass of H in 1 mole of water = 2 g
2 g of H is present in 18 g of water.
Therefore,
8.31 g of H will be present in = (8.31 × 18) / 2 = 74.79 g of water.
Thus, 2.5×10²⁴ atoms of Hydrogen is present in 74.79 g of water.
Learn more about Avogadro's number:
brainly.com/question/26141731