Chemical energy (calories) is converted by your body walking on the surface into mechanical/kinetic energy
Solution :
Speed of the air craft,
= 262 m/s
Fuel burns at the rate of,
= 3.92 kg/s
Rate at which the engine takes in air,
= 85.9 kg/s
Speed of the exhaust gas that are ejected relative to the aircraft,
=921 m/s
Therefore, the upward thrust of the jet engine is given by

F = 85.9(921 - 262) + (3.92 x 921)
= 4862635.79 + 3610.32
= 
Therefore thrust of the jet engine is
.
Answer:
E = {(Charge Density/2e0)*(1 - [z/(sqrt(z^2 - R^2))]}
R is radius = Diameter/2 = 0.210m.
At z = 0.2m,
Put z = 0.2m, and charge density = 2.92 x 10^-2C/m2, and constant value e0 in the equation,
E can be calculated at distance 0.2m away from the centre of the disk.
Put z = 0.3m and all other values in the equation,
E can be calculated at distance 0.3m away from the centre of the disk
Answer:
1.when it is closest to the sun
2.when it is midway between its farthest
Explanation:
According to the law of Kepler's
T ² ∝ r³
T=Time period
r=semi major axis
We also know that time period T given as

v=Speed







So we can say that ,when r is more then the speed will be minimum and when r is low then speed will be maximum.