Observe a blue light be wavelength flame test during
Answer:
V₂ = 12.5 mL
Explanation:
Given data:
Initial volume = 100.0 mL
Initial pressure = 50.0 KPa
Final volume = ?
Final pressure = 400.0 KPa
Solution:
The given problem will be solved through the Boyle's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
50.0 KPa × 100.0 mL = 400 KPa × V₂
V₂ = 5000 KPa.mL/ 400 KPa
V₂ = 12.5 mL
During a collision, the person would most likely experience the same conditions with or without a seatbelt.
Answer:
shorter than
equal to
Explanation:
Let us go back to the Einstein photoelectric equation;
KE = E - Wo
Where
KE = kinetic energy of the photoelectron
E = energy of the incident photon
Wo = work function of the metal
But KE = 1/2mv^2
Thus the velocity of the emitted photoelectron is determined by the kinetic energy of the emitted photoelectron.
Since the work function of metal A is smaller than that of metal B, the kinetic energy of photoelectrons emitted from metal A is greater than that of photoelectrons emitted from metal B . Therefore, the velocity of electrons from metal A is greater than those from metal B.
From de Broglie relation;
λ = h/mv
Where;
λ = de Broglie wavelength
h = Plank's constant
m = mass
v = velocity
Metal A producing electrons with greater velocity will lead to a shorter de Broglie wavelength compared to those from metal B.
The number of photoelectrons ejected is determined by the intensity of the photons and not the energy of the incident photons or the work function of the metals. Since the two metals are exposed to the the same laser, equal number of photoelectrons are produced for metals A and B.