Answer:
Molecular formulas describe the exact number and type of atoms in a single molecule of a compound. The constituent elements are represented by their chemical symbols, and the number of atoms of each element present in each molecule is shown as a subscript following that element's symbol.
Answer:
-0.85KJ
Explanation:
Given N2(g) + H2(g) <--->2NH3(g)
Kp =[ P(NH3)]²/[P(H2)]³[P(N2)]
Where P is the pressure of the gas
P(H2)b= P(N2) = 125atm
P(NH3) = 200atm
Kp = 2²/(125)³(125)
Kp = 2.048 ×10^-6
∆G = -RTlnKp
R =0.008314 J/Kmol
T = 25 +273/= 298k
= 8.314 ×10^-3 × 298 × ln(2.048 ×10^-6)
= -0.008314 × 298 × (-13.099)
= 32.45KJ
∆G = ∆G° + RTlnKp
∆G = -33.3 + 32.45
∆G = -0.85KJ or -850J
Answer:
Valence electrons are the most important electrons to an atom.
Explanation:
They will determine many of the atoms traits since they are involved in bonding with other atoms.
Answer:
[OH-] for this solution is 4.255*10^-12
Explanation:
We are given
[H+] = 2.35 × 10-3 M
we need to find the concentration of [OH-]
we know from Equilibrium
[H+][OH-] = 10^-14
[OH-] = 10^14/2.35*10^10^-3
[OH-] = 0.4255*10^-11
[OH] = 4.255*10^-12
Therefore the Concentration of [OH-] for this solution is 4.255*10^-12