Don't really know if this is what your asking but P1/T1= P2/T2 should show how the pressure varies with temperature (V is left out because it's constant since the gas is trapped in an aerosol can). As the temperature rises the pressure rises and if it gets too high then the can explodes, which is why it should be stored in a cool place. There's also PV=nRT might be kind of hard to find moles (n) though.
Answer: Although the best-known cause of a mass extinction is the asteroid impact that killed off the non-avian dinosaurs, in fact, volcanic activity seems to have wreaked much more havoc on Earth's biota. Volcanic activity is implicated in at least four mass extinctions, while an asteroid is a suspect in just one. Examples, of mass extinctions are Permian extinction of marine species, and Cretaceous extinction of various species, including dinosaurs.
Answer: electronic configuration
Explanation:
We cannot solve this problem without using empirical data. These reactions have already been experimented by scientists. The standard Gibb's free energy, ΔG°, (occurring in standard temperature of 298 Kelvin) are already reported in various literature. These are the known ΔG° for the appropriate reactions.
<span>glucose-1-phosphate⟶glucose-6-phosphate ΔG∘=−7.28 kJ/mol
fructose-6-phosphate⟶glucose-6-phosphate ΔG∘=−1.67 kJ/mol
</span>
Therefore, the reaction is a two-step process wherein glucose-6-phosphate is the intermediate product.
glucose-1-phosphate⟶glucose-6-phosphate⟶fructose-6-phosphate
In this case, you simply add the ΔG°. However, since we need the reverse of the second reaction to end up with the terminal product, fructose-6-phosphate, you'll have to take the opposite sign of ΔG°.
ΔG°,total = −7.28 kJ/mol + 1.67 kJ/mol = -5.61 kJ/mol
Then, the equation to relate ΔG° to the equilibrium constant K is
ΔG° = -RTlnK, where R is the gas constant equal to 0.008317 kJ/mol-K.
-5.61 kJ./mol = -(0.008317 kJ/mol-K)(298 K)(lnK)
lnK = 2.2635
K = e^2.2635
K = 9.62
Explanation:
B more negative charges than positive charges