Answer:
29274.93096 m/s




Explanation:
= Distance at perihelion = 
= Distance at aphelion = 
= Velocity at perihelion = 
= Velocity at aphelion
m = Mass of the Earth = 5.98 × 10²⁴ kg
M = Mass of Sun = 
Here, the angular momentum is conserved

Earth's orbital speed at aphelion is 29274.93096 m/s
Kinetic energy is given by

Kinetic energy at perihelion is 
Potential energy is given by

Potential energy at perihelion is 

Kinetic energy at aphelion is 
Potential energy is given by

Potential energy at aphelion is 
Answer:
Group IA elements have only one valency electron while Group IIA have two valency electrons.
Group IA elements have cations with higher charge density hence polarizing anions easier resulting into covalent character while Group IIA elements have cations with lower charge density hence difficulty in distorting anions resulting into a ionic character. This is due to difference in cationic radii and charges
Answer:
The wavelength will be 4 cm, frequency will be 4.66 Hz and wave speed is 18.6 cm/sec
Explanation:
Given:
No. of crest = 13
No. of trough = 15
Time = 3 seconds
Hence, 1 crest or 1 trough = 
therefore,
13 C + 15 T = 
=
Time given 3 seconds
= 

2 cm distance is travelled is time period

Again wave will travel in 1 T = 4 cm
wave speed v =
= 
= 18.6 cm/s
<span>The change in internal energy is only gravitional PE because the tube is being drug up at a constant speed. Since it is at a constant speed, the change in KE is 0.
Change in PE = m*g*h = 78 kg * 10 m/s^2 * 30 m = 23400 J
Work done on the system is from the force
Work = force * distance = 350 N * 120 m = 42000 J
So, work added 42000 J to the system, but the rider's energy only increased 23400 J. Therefore, friction took up the difference. Friction is where the thermal energy comes from
Q = 42000 J - 23400 J = 18600 J.
Therfore, friction generated 18600 J of heat to the surroundings.</span>