The relationship between the masses of the Earth, moon and sun and their distances to each other play critical roles in affecting tides
Answer:
Bubbles paused
Explanation:
the air bubble doesn't rise because it is no lighter than the water around it—there's no buoyancy. The droplet doesn't fall from the leaf because there's no force to pull it off. It's stuck there by molecular adhesion.
for instance, onto the International Space Station, gravity becomes negligible, and the laws of physics act differently than here on Earth
On Earth, the buoyancy of the air bubbles causes them to rise to the top together, creating a segregation between air and water. However, in microgravity, nothing forces the air bubbles to interact and thus rise together, Green said.
C) water is the answer i believe
Answer:
D) 720 kmph
Explanation:
First, let's find what distance this aeroplane covered. Distance (d) is the product of speed and time - here, we have a speed of 240 kmph and a time of 5 hours, gives us
km
Using that same fact, we can set up a new equation to solve for speed (s) when we have a distance of 1200 km and a time of 1 2/3 hours. For the sake of cleanliness, I'm gonna rewrite 1 2/3 as the improper fraction 5/3:

Multiplying both sides of the equation by 3/5:
kmph
So our answer is D.
Answer:
D
Explanation:
The CV system does all of the above