In the offensive role, the players try to get a goal.
In the defensive roll, The players try to protect the goal
Hoped this helped a little :)
Answer:
a) v₁fin = 3.7059 m/s (→)
b) v₂fin = 1.0588 m/s (→)
Explanation:
a) Given
m₁ = 0.5 Kg
L = 70 cm = 0.7 m
v₁in = 0 m/s ⇒ Kin = 0 J
v₁fin = ?
h<em>in </em>= L = 0.7 m
h<em>fin </em>= 0 m ⇒ U<em>fin</em> = 0 J
The speed of the ball before the collision can be obtained as follows
Einitial = Efinal
⇒ Kin + Uin = Kfin + Ufin
⇒ 0 + m*g*h<em>in</em> = 0.5*m*v₁fin² + 0
⇒ v₁fin = √(2*g*h<em>in</em>) = √(2*(9.81 m/s²)*(0.70 m))
⇒ v₁fin = 3.7059 m/s (→)
b) Given
m₁ = 0.5 Kg
m₂ = 3.0 Kg
v₁ = 3.7059 m/s (→)
v₂ = 0 m/s
v₂fin = ?
The speed of the block just after the collision can be obtained using the equation
v₂fin = 2*m₁*v₁ / (m₁ + m₂)
⇒ v₂fin = (2*0.5 Kg*3.7059 m/s) / (0.5 Kg + 3.0 Kg)
⇒ v₂fin = 1.0588 m/s (→)
Answer:
2.295 eV
Explanation:
maximum wavelength, λ = 542 nm = 542 x 10^-9 m
The work function of the metal is defined as the minimum amount of energy falling on the metal so that the photo electrons just ejects the surface of metal.

where, h is the Plank's constant and c be the speed of light
h = 6.634 x 10^-34 Js
c = 3 x 10^8 m/s


Wo = 2.295 eV
Thus, the work function of this metal is 2.295 eV.
Answer:3.33x10^(-17)
Explanation:
Period=wavelength ➗ velocity
Period=1/10^8 ➗ (3x10^8)
Period=3.33x10^(-17)