Answer:
- 5436 J
Explanation:
mass of car, m = 120 kg
radius of loop, r = 12 m
velocity at the bottom (A) = Va = 25 m/s
Velocity at the top(B) = Vb = 8 m/s
Vertical distance from A to B = diameter of loop, h = 2 x 12 = 24 m
by use of Work energy theorem
Work done by all the forces = change in kinetic energy of the body
Work done by the force + Work done by the friction = Kinetic energy at B - kinetic energy at A
- m x g x h + Work done by friction = 0.5 x 120 x (Vb^2 - Va^2)
- 120 x 9.8 x 24 + Work done by friction = 60 x (64 - 625)
- 28224 + Work done by friction = - 33660
Work done by friction = -33660 + 28224 = - 5436 J
Answer:
Θ
Θ
Θ = 
Explanation:
Applying the law of conservation of momentum, we have:
Δ

Θ (Equation 1)
Δ

Θ (Equation 2)
From Equation 1:
Θ
From Equation 2:
sinΘ = 

Replacing Equation 3 in Equation 4:


Θ (Equation 5)
And we found Θ from the Equation 5:
tanΘ=
Θ=
Answer:the answer should be dark energy
Explanation: