Answer:
The equilibrium partial pressure of O2 is 0.545 atm
Explanation:
Step 1: Data given
Partial pressure of SO2 = 0.409 atm
Partial pressure of O2 = 0.601 atm
At equilibrium, the partial pressure of SO2 was 0.297 atm.
Step 2: The balanced equation
2SO2 + O2 ⇆ 2SO3
Step 3: The initial pressure
pSO2 = 0.409 atm
pO2 = 0.601 atm
pSO3 = 0 atm
Step 4: Calculate the pressure at the equilibrium
pSO2 = 0.409 - 2X atm
pO2 = 0.601 - X atm
pSO3 = 2X
pSO2 = 0.409 - 2X atm = 0.297
X = 0.056 atm
pO2 = 0.601 - 0.056 = 0.545 atm
pSO3 = 2*0.056 = 0.112 atm
Step 5: Calculate Kp
Kp = (pSO3)²/((pO2)*(pSO2)²)
Kp = (0.112²) / (0.545 * 0.297²)
Kp = 0.261
The equilibrium partial pressure of O2 is 0.545 atm
The method that can be used to separate the mixture is chromatography.
<h3>
What is chromatography?</h3>
"Chromatography" is obtained form a Greek word which literarily means, color writing. It is a method of separation which is common in separating a mixture of pigments.
To obtain the colors used, two solvents are mixed and the sample ink is dissolved in the solvents then spotted on a thin layer and put into a TLC chamber then the chromatogram is allowed to develop.
The various components of the pigment will appear on the chromatogram and can be identified using spectrophotometry. The Rf values of each component can also be used to identify it.'
Learn more about chromatography: brainly.com/question/26491567
Answer:
A) 0 °C, because it is the melting point of ice.
Explanation:
- Point B is the temperature at which the water is converted from ice (solid phase) to liquid water (liquid phase), which is the melting transition of water.
Melting point of the water is at 0.0°C.
<em>So, the right choice is: A) 0 °C, because it is the melting point of ice. </em>
<em></em>