Answer:
Because the total energy of the enzyme has been used up and actions already complete
Explanation:
Catalyst are substance known to speed up rate of chemical reaction just like taking a short pathway. When velocity of catalyzed reaction reach maximum, at that moment reaction has reach it full potential (there is an equilibrium in reaction). there won't be any changes on further addition, and mostly indicate that Reaction is Complete
Answer:
₈₆²²²Rn → ₈₄Po²¹⁸ + H₂⁴
Explanation:
The given nuclear reaction shows alpha decay.
₈₆²²²Rn → ₈₄Po²¹⁸ + H₂⁴
Properties of alpha radiations:
Alpha radiations are emitted as a result of radioactive decay. The atom emit the alpha particles consist of two proton and two neutrons. Which is also called helium nuclei. When atom undergoes the alpha emission the original atom convert into the atom having mass number less than 4 and atomic number less than 2 as compared to parent atom the starting atom.
Alpha radiations can travel in a short distance.
These radiations can not penetrate into the skin or clothes.
These radiations can be harmful for the human if these are inhaled.
These radiations can be stopped by a piece of paper.
₉₂U²³⁸ → ₉₀Th²³⁴ + ₂He⁴ + energy
Answer:True But matter can take up much space and is stronger than density and gravity
Explanation: Gravity is like a force that just pull on objects now if you get down to the magnets well magnetism is the strongest force on earth that could be connected through the core
Answer:
d = 0.9 g/L
Explanation:
Given data:
Number of moles = 1 mol
Volume = 24.2 L
Temperature = 298 K
Pressure = 101.3 Kpa (101.3/101 = 1 atm)
Density of sample = ?
Solution:
PV = nRT (1)
n = number of moles
number of moles = mass/molar mass
n = m/M
Now we will put the n= m/M in equation 1.
PV = m/M RT (2)
d = m/v
PM = m/v RT ( by rearranging the equation 2)
PM = dRT
d = PM/RT
The molar mass of neon is = 20.1798 g/mol
d = 1 atm × 20.1798 g/mol / 0.0821 atm. L/mol.K × 273K
d = 20.1798 g/22.413 L
d = 0.9 g/L
Answer:
The force of the gases pushes downward at the same time that the gases push the rocket upwards. 1.
Explanation: