The height of a person is the dependent variable because it depends on the years.
Answer:
Ein: 2.75*10^-3 N/C
Explanation:
The induced electric field can be calculated by using the following path integral:

Where:
dl: diferencial of circumference of the ring
circumference of the ring = 2πr = 2π(5.00/2)=15.70cm = 0.157 m
ФB: magnetic flux = AB (A: area of the loop = πr^2 = 1.96*10^-3 m^2)
The electric field is always parallel to the dl vector. Then you have:

Next, you take into account that the area of the ring is constant and that dB/dt = - 0.220T/s. Thus, you obtain:

hence, the induced electric field is 2.75*10^-3 N/C
Answer:
A. The particles will begin to move enough
that they slide past each other.
Explanation:
When the plastic cup is heated, the Kinetic energy of its particles starts increasing. As the temperature rises, the kinetic energy keeps increasing. With the increase of K.E, the particles start moving faster and faster. When the temperature finally reaches the melting point, the K.E of the molecules is enough to break the bonds and slide past each other.
This Question is not complete
Complete Question:
a. A hawk flies in a horizontal arc of radius 11.3 m at a constant speed of 5.7 m/s. Find its centripetal acceleration.
Answer in units of m/s2
b. It continues to fly along the same horizontal arc but increases its speed at the rate of 1.34 m/s2. Find the magnitude of acceleration under
these new conditions.
Answer in units of m/s2
Answer:
a. 2.875m/s²
b. 3.172m/s²
Explanation:
a. The formula for centripetal acceleration = (speed²) ÷ radius
Centripetal acceleration = (5.7m/s)²÷ 11.3m
Centripetal acceleration = 2.875m/s²
b. Magnitude of acceleration can be calculated by finding the sum of the vectors for the both the centripetal acceleration and the increase in the speed rate.
Centripetal acceleration ( acceleration x) = 2.875m/s²
Increase in the speed rate ( acceleration n) = 1.34m/s²
Magnitude of acceleration = √a²ₓ + a²ₙ
=√( 2.875m/s²)²+ (1.34m/s²)²
= √ 10.06m/s²
= 3.172m/s²
We want to calculate the distance covered by the drag racer. Recall, the formula for calculating distance is expressed as
Distance = speed x time
From the information given,
speed = 320 m/s
time = 4.5 s
By substituting these values into the formula, we have
Distance = 320 m/s x 4.5s
s cancels out. We are left with m. Thus,
Distance = 1440m