Answer:
Explanation:
Before Thomson's discovery, atoms were believed according to the "Dalton's atomic theory" to be the smallest indivisible particle of any matter. This makes atoms the smallest unit of a matter.
Thomson in 1897, used the discharge tube to discover cathode rays which are today called electrons.
The discovery of electrons provided more light into the structure and nature of atoms. Atoms were now being seen in a different light as particles that are made up of other smaller sized particles.
Thomson through his experiment was able determine perfectly well the nature of the rays he saw emanating from the cathode. One of his findings shows that the rays are negatively charged and are repelled by negative charges.
The discovery of electrons further led to more works on the atom and other particles were discovered. Atoms were no longer seen as indivisible or the smallest particles of matter.
First convert 5.5 cm to meters.
(5.5 cm / 1) x (m / 100 cm) = 0.055 m
A typical atom is about 1.0E-10 m in diameter; thus:
0.055 m / 1.0E-10 m = 5.5E8 atoms or 550,000,000 end-to-end atoms in 5.5 cm
It’s supposed to be gamma, what are your other options
1 kg ball can have more kinetic energy than a 100 kg ball as increase in velocity is having greater impact on K.E than increase in mass.
<u>Explanation</u>:
We know kinetic energy can be judged or calculated by two parameters only which is mass and velocity. As kinetic energy is directly proportional to the
and increase in velocity leads to greater effect on translational Kinetic Energy. Here formula of Kinetic Energy suggests that doubling the mass will double its K.E but doubling velocity will quadruple its velocity:

Better understood from numerical example as given:
If a man A having weight 50 kg run with speed 5 m/s and another man B having 100 kg weight run with 2.5 m / s. Which man will have more K.E?
This can be solved as follows:


It shows that man A will have more K.E.
Hence 1 kg ball can have more K.E than 100 kg ball by doubling velocity.