Option (a) is correct.
Falling objects accelerate as they approach the ground.This is because of the force of gravity acting on the falling objects. so the velocity of these objects increases continuously as they approach the ground. the acceleration acting on the falling objects is a constant ( close to the surface of earth) and is called as acceleration due to gravity denoted by g. value of g=9.8 m/s².
Here’s a good photo to reference when converting in the metric system.
Each time you move down a step you move the decimal to the right, each time you move up a step you move the decimal to the left.
We are going from 1.2 kg or kilograms, which is at the very top left of the ladder. To get to mg or milligrams, we would have to make six jumps, so we’d move the decimal over six times.
1.2 > 12. > 120. > 1200. > 12000. > 120000. > 1200000.
So our final answer would be 1,200,000mg.
Answer:

Explanation:
The volume charge density is defined by ρ =
(Equation A), where Q is the charge and V, the volume.
The units in the S.I. are
, so we have to express the radius in meters:
inner radius = 
outer radius = 
Now, we know that the volume of the sphere is calculated by the formula:
, and as we have an spherical shell, the volume is calculated by the difference between the outher and inner spheres:
V =
, where
is the outer radius and
is the inner radius.
Replacing the volume formula in the Equation A:
ρ = 
ρ = 
Replacing the values of the outer and inner radius whe have:
ρ = 
ρ = 
Answer:
¿Qué estás intentando hoy?
Explanation:
Answer:
The resultant velocity = 3.16 m/s
Explanation:
Since the boat is moving North of the direction of the riverflow, the river would either be flowing westward or Eastward. The two motions form a right angle triangle with the resultant velocity being the hypotenuse of the traingle.
The resultant velocity will be given as ;
R² = B² + r²
Where B is the velocity of the boat and r is the velocity of the river
R² = 3² + 1²
R² = 10
R = √10 = 3.16 m/s
Therefore, the resultant velocity = 3.16 m/s