I think it's D . They have the same number of electrons in their outermost shells
Answer:
42.5 m/s
Explanation:
Given:
x₀ = 0 m
x = 62 m
y₀ = 80 m
y = 0 m
v₀ᵧ = 0 m/s
aₓ = 0 m/s²
aᵧ = -9.8 m/s²
Find: v
First, find the time it takes to land.
y = y₀ + v₀ᵧ t + ½ aᵧ t²
(0 m) = (80 m) + (0 m/s) t + ½ (-9.8 m/s²) t²
t = 4.04 s
Find the horizontal component vₓ:
x = x₀ + vₓ t − ½ aₓ t²
(62 m) = (0 m) + vₓ (4.04 s) − ½ (0 m/s²) (4.04 s)²
vₓ = 15.3 m/s
Find the vertical component vᵧ:
vᵧ = aᵧ t + v₀ᵧ
vᵧ = (-9.8 m/s²) (4.04 s) + (0 m/s)
vᵧ = -39.6 m/s
Find the speed using Pythagorean theorem:
v = √(vₓ² + vᵧ²)
v = √((15.3 m/s)² + (-39.6)²)
v = 42.5 m/s
The discovery of Uranus, Neptune, most asteroids, the moons of
any planet other than Earth, Pluto, and all the other dwarf planets,
required the invention and use of telescopes. Those objects are all
too dim to be seen with a bare naked human eye.
Saturn is bright and plainly visible with your eyes, if you know when
and where to look, and what you're looking at.
Answer:
Astronauts who are orbiting the Earth often experience sensations of weightlessness. These sensations experienced by orbiting astronauts are the same sensations experienced by anyone who has been temporarily suspended above the seat on an amusement park ride. Not only are the sensations the same (for astronauts and roller coaster riders), but the causes of those sensations of weightlessness are also the same. Unfortunately however, many people have difficulty understanding the causes of weightlessness.