Answer:
(a) 81.54 N
(b) 570.75 J
(c) - 570.75 J
(d) 0 J, 0 J
(e) 0 J
Explanation:
mass of crate, m = 32 kg
distance, s = 7 m
coefficient of friction = 0.26
(a) As it is moving with constant velocity so the force applied is equal to the friction force.
F = 0.26 x m x g = 0.26 x 32 x 9.8 = 81.54 N
(b) The work done on the crate
W = F x s = 81.54 x 7 = 570.75 J
(c) Work done by the friction
W' = - W = - 570.75 J
(d) Work done by the normal force
W'' = m g cos 90 = 0 J
Work done by the gravity
Wg = m g cos 90 = 0 J
(e) The total work done is
Wnet = W + W' + W'' + Wg = 570.75 - 570.75 + 0 = 0 J
Answer:
The horizontal component is zero.
The vertical component is 
Explanation:
Given that,
The lizard climb 7m directly up on a tree.
We know that,
The horizontal component is

The vertical component is

If the lizard climb 7m directly up on a tree then,
We need to find the components
Using given data
The horizontal component of lizard is

The vertical component is

Hence, The horizontal component is zero.
The vertical component is 
Answer:
Explanation:
Given that,
Weight of jet
W = 2.25 × 10^6 N
It is at rest on the run way.
Two rear wheels are 16m behind the front wheel
Center of gravity of plane 10.6m behind the front wheel
A. Normal force entered on the ground by front wheel.
Taking moment about the the about the real wheel.
Check attachment for better understanding
So,
Clock wise moment = anti-clockwise moment
W × 5.4 = N × 16
2.25 × 10^6 × 5.4 = 16•N
N = 2.25 × 10^6 × 5.4 / 16
N = 7.594 × 10^5 N
B. Normal force on each of the rear two wheels.
Using the second principle of equilibrium body.
Let the rear wheel normal be Nr and note, the are two real wheels, then, there will be two normal forces
ΣFy = 0
Nr + Nr + N — W = 0
2•Nr = W—N
2•Nr = 2.25 × 10^6 — 7.594 × 10^5
2•Nr = 1.491 × 10^6
Nr = 1.491 × 10^6 / 2
Nr = 7.453 × 10^5 N
-- The acceleration of gravity is 9.8 m/s².
So if there's no air resistance, the speed of a falling object
always increases by 9.8 m/s for every second it falls.
Speed = (original speed) + (gravity x falling time)
-- If it has no vertical speed when it started, then at the end
of 3 seconds, its speed is
= (0) + (9.8 m/s² x 3 sec)
Velocity = 29.4 m/s downward .