1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arlecino [84]
3 years ago
13

When the flower below is rotated clockwise 90°, where will the red petal be in the image?

Physics
1 answer:
murzikaleks [220]3 years ago
6 0
Hey I need a pic then I'll answer in the comments. If no pic then if a red petal is directly facing a side, then it will be facing the adjacent clockwise side.
You might be interested in
You have two small spheres, each with a mass of 2.40 grams, separated by a distance of 10.0 cm. You remove the same number of el
nordsb [41]

Answer:

q = 2.066* 10⁻¹³ C.

n = 1,291,250 electrons.

Explanation:

1)

  • If the gravitational attraction is equal to their electrical repulsion, we can write the following equation:

       F_{g} = F_{c} (1)

  • where Fg is the gravitational attraction, that can be written as follows        according Newton's Universal Law of Gravitation:

       F_{g} = G*\frac{m_{1}*m_{2}}{r_{12}^{2}} (2)

  • Fc, due to it is the electrical repulsion between both charged spheres, must obey Coulomb's Law (assuming  we can treat both spheres as point charges), as follows:

       F_{c} = k*\frac{q_{1}*q_{2}}{r_{12}^{2}} (3)

  • since m₁ = m₂ = 0.0024 kg, and  r₁₂ = 0.1m, G and k universal constants, and q₁ = q₂ = Q, we can replace the values in (2) and (3), so we can rewrite (1) as follows:

       G*\frac{(0.0024kg)^{2}}{r_{12}^{2}} = k*\frac{Q^{2}}{r_{12}^{2}} (4)

  • Since obviously the distance is the same on both sides, we can cancel them out, and solve (4) for Q² first, as follows:

       Q^{2} = \frac{6.67e-11*(0.0024kg)^{2}}{9e9Nm2/C2} = 4.27*e-26 C2 (5)

  • Since both charges are the same, the charge on each sphere is just the square root of (5):
  • Q = 2.066* 10⁻¹³ C.

2)

  • Assuming that both spheres were electrically neutral before being charged, the negative charge removed must be equal to the positive charge on the spheres.
  • Now, since each electron carries an elementary charge equal to -1.6*10⁻¹⁹ C, in order to get the number of electrons removed from each sphere, we need to divide the charge removed from each sphere (the outcome of part 1) with negative sign) by the elementary charge, as follows:
  • n_{e} =\frac{-2.066e-13C}{-1.6e-19C} = 1,291,250 electrons. (6)
4 0
3 years ago
Block A is also connected to a horizontally-mounted spring with a spring constant of 281 J/m2. What is the angular frequency (in
Svetradugi [14.3K]

Answer:

This question is incomplete

Explanation:

This question is incomplete. However, the formula to be used here is

ω = 2π/T

Where ω is the angular frequency (in rad/s)

T is the period - the time taken for Block A to complete one oscillation and return to it's original position.

To solve for this period T, the formula below should be used

T = 2π√m/k

where m is the mass of the object (Block A) and k is the spring constant (281 J/m²)

5 0
3 years ago
One horsepower is equal to how many watts
Keith_Richards [23]
One horsepower is about 745.7 watts
5 0
3 years ago
A hollow cylinder of mass 2.00 kgkg, inner radius 0.100 mm, and outer radius 0.200 mm is free to rotate without friction around
kipiarov [429]

Answer: 2.86 m

Explanation:

To solve this question, we will use the law of conservation of kinetic and potential energy, which is given by the equation,

ΔPE(i) + ΔKE(i) = ΔPE(f) + ΔKE(f)

In this question, it is safe to say there is no kinetic energy in the initial state, and neither is there potential energy in the end, so we have

mgh + 0 = 0 + KE(f)

To calculate the final kinetic energy, we must consider the energy contributed by the Inertia, so that we then have

mgh = 1/2mv² + 1/2Iw²

To get the inertia of the bodies, we use the formula

I = [m(R1² + R2²) / 2]

I = [2(0.2² + 0.1²) / 2]

I = 0.04 + 0.01

I = 0.05 kgm²

Also, the angular velocity is given by

w = v / R2

w = 4 / (1/5)

w = 20 rad/s

If we then substitute these values in the equation we have,

0.5 * 9.8 * h = (1/2 * 0.5 * 4²) + (1/2 * 0.05 * 20²)

4.9h = 4 + 10

4.9h = 14

h = 14 / 4.9

h = 2.86 m

8 0
3 years ago
Read 2 more answers
What are the characteristics of an index fossil?
vichka [17]
I think as a mold. when the Flood came in Genesis, i believe that when the fish were washed away, the kinda made a mold in a rock.
4 0
3 years ago
Read 2 more answers
Other questions:
  • I need help with all the blanks
    8·1 answer
  • Can someone help me with this question?¿
    12·1 answer
  • 70 kg to mg i need to show the work of how i did it
    10·1 answer
  • Your town is considering building a hydroelectric power plant. Describe at least two advantages and two disadvantages of this pr
    9·2 answers
  • A 100. N block sits on a rough horizontal floor. The coefficient of sliding friction between the block and the floor is 0.250. A
    9·1 answer
  • A rock falls from a cliff and hits the ground at a velocity of 28m/s. How long did it take to fall?
    9·1 answer
  • Explain how energy that comes from the outside of the Earth system drives the flow of water on surface currents.
    8·1 answer
  • What is the dependent variable?<br> A. Speed<br> B. Time<br> C. Acceleration <br> D. Distance
    15·2 answers
  • If I walk 30 m north and turn around and walk 10 m to the south, what is the magnitude
    15·2 answers
  • Is the Transco Tower were actually 3000 meters tall how long would an object take to free fall off the top of the building
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!