1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
castortr0y [4]
2 years ago
14

Ehat is (-2,-4) rotated 270⁰ counterclockwise about the origin?​

Mathematics
1 answer:
marshall27 [118]2 years ago
5 0
I’m not sure.. I think it would be(-2,4)
You might be interested in
Help please someone i need help!!
ycow [4]

Answer:

c= 7

Step-by-step explanation:

6 0
2 years ago
Find the midpoint of diagonal WY.. . Figure WXYZ is shown. W is at 0, 2. X is at 0, 6. Y is at 6, 6. Z is at 6, 2.. . (2, 4). .
Anestetic [448]

Answer:

(3,4)

Step-by-step explanation:

we know that

The formula to calculate the coordinates of the midpoint between two points is equal to

M(\frac{x1+x2}{2},\frac{y1+y2}{2})

we have that

The coordinates of diagonal WY are

W(0,2), Y(6,6)

substitute in the formula to calculate the midpoint

M(\frac{0+6}{2},\frac{2+6}{2})

M(\frac{6}{2},\frac{8}{2})

M(3,4)

3 0
3 years ago
Read 2 more answers
Moira placed $2 in an empty piggy bank, and then added $3 every month. The same day, Nathan placed $5 in an empty piggy bank, an
iren2701 [21]

Answer:

A because they can never be equal because each month Moira adds 5 dollars and Nathan adds 8 dollars

3 0
3 years ago
Read 2 more answers
How to expand 2/3(12x-9)?
morpeh [17]

Distribute easy: 8x; 2/3 of 12 is 8.
8x-6

8x-6
6 0
3 years ago
Read 2 more answers
Find the derivative: y={ (3x+1)cos(2x) } / e^2x​
DochEvi [55]

Answer:

\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring
  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}
  • Exponential Rule [Powering]:                                                                       \displaystyle (b^m)^n = b^{m \cdot n}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule:                                                                                                         \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Quotient Rule:                                                                                                       \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Trig Derivative:                                                                                                       \displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)

eˣ Derivative:                                                                                                         \displaystyle \frac{d}{dx}[e^u] = u'e^u

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{(3x + 1)cos(2x)}{e^{2x}}

<u>Step 2: Differentiate</u>

  1. [Derivative] Quotient Rule:                                                                           \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}
  2. [Derivative] [Fraction - Numerator] eˣ derivative:                                       \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}
  3. [Derivative] [Fraction - Denominator] Exponential Rule - Powering:         \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  4. [Derivative] [Fraction - Numerator] Product Rule:                                       \displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  5. [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:             \displaystyle y' = \frac{[(1 \cdot 3x^{1 - 1})cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  6. [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:       \displaystyle y' = \frac{[3cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  7. [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:                   \displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  8. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}
  9. [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:                     \displaystyle y' = \frac{3cos(2x) -2sin(2x)(3x + 1) - 2(3x + 1)cos(2x)}{e^{2x}}
  10. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

Topic: AP Calculus AB/BC

Unit: Derivatives

Book: College Calculus 10e

6 0
3 years ago
Other questions:
  • How does the graph of g(x) = -(x + 3)4 compare to the parent function of f(x) = xº?
    7·1 answer
  • Bones Brothers &amp; Associates prepare individual tax returns. Over prior years, Bones Brothers have maintained careful records
    9·1 answer
  • What are the square roots of 64144 ? −812 and 812 −49 and 49 −3272 and 3272 −412 and 412
    9·1 answer
  • The grass in Jamie's yard grew 16 centimeters in 10 days. It was growing at a constant rate. How many days did it take the grass
    10·2 answers
  • X^2+43xy+590y^2 resolve into factors​
    15·1 answer
  • Where r is the radius of the cylinder and h is the height of the cylinder.
    12·1 answer
  • What is the value of X?
    14·1 answer
  • Freeee pooiiintss!!<br> 3/4 into a decimal.
    6·2 answers
  • S is the midpoint of RT. <br> If RS = 4x - 3 and RT = 6x - 4,<br> what’s the value of ST?
    13·1 answer
  • The solid below is made from cubes.<br> Find its volume.
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!