Answer:
Products are favored.
Explanation:
The acid-base reaction of CH₃COOH (acid) with NH₃ (base) produce:
CH₃COOH + NH₃ ⇄ CH₃COO⁻ + NH₄⁺ Kr = ?
It is possible to know Kr of the reaction by the sum of acidic dissociations of the half-reactions. That is:
CH₃COOH ⇄ CH₃COO⁻ + H⁺ Ka = 1.8x10⁻⁵
NH₃ + H⁺ ⇄ NH₄⁺ 1/Ka = 1/ 5.6x10⁻¹⁰ = 1.8x10⁹
___________________________________
CH₃COOH + NH₃ ⇄ CH₃COO⁻ + NH₄⁺ Kr = 1.8x10⁻⁵×1.8x10⁹ = <em>3.2x10⁴</em>
<em> </em>
As Kr is defined as:
Kr = [CH₃COO⁻] [NH₄⁺] / [CH₃COOH] [NH₃]
And Kr is > 1
[CH₃COO⁻] [NH₄⁺] > [CH₃COOH] [NH₃],
showing <em>products are favored</em>.
Answer:
Percent error = 25%
Explanation:
Given data:
Measured density of water = 1.25 g/mL
Accepted density value of water = 1 g/mL
Percent error = ?
Solution:
Formula:
Percent error = (measured value - accepted value / accepted value) × 100
Now we will put the values in formula:
Percent error = (1.25 g/mL - 1 g/mL /1 g/mL )× 100
Percent error = (0.25 g/mL /1 g/mL )× 100
Percent error = 0.25 × 100
Percent error = 25%
Beef and cheddar I believe!!!
Answer:
The amount of energy released from the combustion of 2 moles of methae is 1,605.08 kJ/mol
Explanation:
The chemical reaction of the combustion of methane is given as follows;
CH₄ (g) + 2O₂ (g) → CO₂ (g) + 2H₂O (g)
Hence, 1 mole of methane combines with 2 moles of oxygen gas to form 1 mole of carbon dioxide and 2 moles of water vapor
Where:
CH₄ (g): Hf = -74.6 kJ/mol
CO₂ (g): Hf = -393.5 kJ/mol
H₂O (g): Hf = -241.82 kJ/mol
Therefore, the combustion of 1 mole of methane releases;
-393.5 kJ/mol × 1 + 241.82 kJ/mol × 2 + 74.6 kJ/mol = -802.54 kJ/mol
Hence the combustion of 2 moles of methae will rellease;
2 × -802.54 kJ/mol or 1,605.08 kJ/mol.