<em>If the force squeezing two surfaces together is decreased, the force of dry sliding friction between the two surfaces will most likely decrease. </em>
<u>therefore your answer is B)</u><u>d</u><u>e</u><u>crease </u>
Hope this helps you- have a good day bro cya)
Answer:
The time for final 15 cm of the jump equals 0.1423 seconds.
Explanation:
The initial velocity required by the basketball player to be able to jump 76 cm can be found using the third equation of kinematics as

where
'v' is the final velocity of the player
'u' is the initial velocity of the player
'a' is acceleration due to gravity
's' is the height the player jumps
Since the final velocity at the maximum height should be 0 thus applying the values in the above equation we get

Now the veocity of the palyer after he cover'sthe initial 61 cm of his journey can be similarly found as

Thus the time for the final 15 cm of the jump can be found by the first equation of kinematics as

where symbols have the usual meaning
Applying the given values we get

Answer:
3.44 metres
Explanation:
To determine the vector sum of the displacements Δd1 = 2.4 m [32° S of W]; Δd2 = 1.6 m [S]; and Δd3 = 4.9 m [27° S of E], resolve the given parameters into x - component and y - component.
Resolving into x - component
- 2.4cos32 + 4.9cos27 = 2.3306
Resolving into y - component
- 2.4sin32 - 4.9sin27 - 1.6 = - 2.553
The vector sum of the displacement will be
Sqrt( 2.3^2 + 2.6^2) =
Sqrt ( 11.81)
3.44 m
Therefore, the vector sum of the displacements is 3.44 metres